81 lines
3.2 KiB
Python
81 lines
3.2 KiB
Python
import pandas as pd
|
|
valid = pd.read_csv("valid.csv")
|
|
|
|
x_columns = ['Male', 'GeneralHealth', 'PhysicalHealthDays', 'MentalHealthDays',
|
|
'PhysicalActivities', 'SleepHours', 'RemovedTeeth',
|
|
'HadAngina', 'HadStroke', 'HadAsthma', 'HadSkinCancer', 'HadCOPD',
|
|
'HadDepressiveDisorder', 'HadKidneyDisease', 'HadArthritis',
|
|
'HadDiabetes', 'DeafOrHardOfHearing', 'BlindOrVisionDifficulty',
|
|
'DifficultyConcentrating', 'DifficultyWalking',
|
|
'DifficultyDressingBathing', 'DifficultyErrands', 'SmokerStatus',
|
|
'ECigaretteUsage', 'ChestScan', 'HeightInMeters', 'WeightInKilograms',
|
|
'BMI', 'AlcoholDrinkers', 'HIVTesting', 'FluVaxLast12', 'PneumoVaxEver',
|
|
'TetanusLast10Tdap', 'HighRiskLastYear', 'CovidPos']
|
|
y_column = 'HadHeartAttack'
|
|
|
|
valid_x = valid[x_columns]
|
|
valid_y = valid[y_column]
|
|
|
|
from tensorflow import keras
|
|
model = keras.models.load_model('model.keras')
|
|
|
|
import numpy as np
|
|
predictions = model.predict(valid_x)[:,0]
|
|
true_answers = valid_y.to_numpy()
|
|
validation_accuracy = np.sum(np.rint(predictions) == true_answers)/len(true_answers)
|
|
print(f"Poprawność na zbiorze walidacyjnym: {validation_accuracy:.2%}")
|
|
|
|
np.savetxt("predictions.txt",predictions)
|
|
np.savetxt("predictions_two_digits.txt",predictions, fmt='%1.2f')
|
|
|
|
validate_heart_disease_true = valid.loc[valid[y_column]==1]
|
|
validate_heart_disease_false = valid.loc[valid[y_column]==0]
|
|
|
|
from datetime import timezone
|
|
import datetime
|
|
import json
|
|
|
|
validate_heart_disease_true_x = validate_heart_disease_true[x_columns]
|
|
validate_heart_disease_false_x = validate_heart_disease_false[x_columns]
|
|
|
|
|
|
|
|
predictions_for_true = model.predict(validate_heart_disease_true_x)[:,0]
|
|
predictions_for_false = model.predict(validate_heart_disease_false_x)[:,0]
|
|
|
|
true_positives = np.sum(np.rint(predictions_for_true) == np.ones_like(predictions_for_true)).tolist()
|
|
true_negatives = np.sum(np.rint(predictions_for_false) == np.zeros_like(predictions_for_false)).tolist()
|
|
false_positives = len(predictions_for_false)-true_negatives
|
|
false_negatives = len(predictions_for_true)-true_positives
|
|
|
|
|
|
current_datetime = datetime.datetime.now(timezone.utc)
|
|
metrics = {"true_positives": true_positives, "true_negatives": true_negatives, "false_positives": false_positives, "false_negatives" : false_negatives, "datetime_utc" : str(current_datetime)}
|
|
history = []
|
|
try:
|
|
with open("metrics.json","r") as f:
|
|
history = json.load(f)
|
|
except FileNotFoundError:
|
|
print('No historical metrics found')
|
|
|
|
history.append(metrics)
|
|
with open("metrics.json","w") as f:
|
|
json.dump(history, f)
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
true_positives_history = [x["true_positives"] for x in history]
|
|
true_negatives_history = [x["true_negatives"] for x in history]
|
|
false_positives_history = [x["false_positives"] for x in history]
|
|
false_negatives_history = [x["false_negatives"] for x in history]
|
|
|
|
plt.plot(true_positives_history, "-go")
|
|
plt.plot(true_negatives_history, "-bo")
|
|
plt.plot(false_positives_history, "-ro")
|
|
plt.plot(false_negatives_history, "-mo")
|
|
|
|
plt.legend(["True positives", "True negatives", "False positives", "False negatives"])
|
|
plt.xlabel("Build number")
|
|
plt.ylabel("Metric value")
|
|
plt.title("Model evaluation history")
|
|
plt.savefig("metrics.jpg") |