projektAI/venv/Lib/site-packages/mlxtend/classifier/adaline.py
2021-06-06 22:13:05 +02:00

136 lines
4.5 KiB
Python

# Sebastian Raschka 2014-2020
# mlxtend Machine Learning Library Extensions
#
# Implementation of the ADAptive LInear NEuron classification algorithm.
# Author: Sebastian Raschka <sebastianraschka.com>
#
# License: BSD 3 clause
import numpy as np
from time import time
from .._base import _BaseModel
from .._base import _IterativeModel
from .._base import _Classifier
class Adaline(_BaseModel, _IterativeModel, _Classifier):
"""ADAptive LInear NEuron classifier.
Note that this implementation of Adaline expects binary class labels
in {0, 1}.
Parameters
------------
eta : float (default: 0.01)
solver rate (between 0.0 and 1.0)
epochs : int (default: 50)
Passes over the training dataset.
Prior to each epoch, the dataset is shuffled
if `minibatches > 1` to prevent cycles in stochastic gradient descent.
minibatches : int (default: None)
The number of minibatches for gradient-based optimization.
If None: Normal Equations (closed-form solution)
If 1: Gradient Descent learning
If len(y): Stochastic Gradient Descent (SGD) online learning
If 1 < minibatches < len(y): SGD Minibatch learning
random_seed : int (default: None)
Set random state for shuffling and initializing the weights.
print_progress : int (default: 0)
Prints progress in fitting to stderr if not solver='normal equation'
0: No output
1: Epochs elapsed and cost
2: 1 plus time elapsed
3: 2 plus estimated time until completion
Attributes
-----------
w_ : 2d-array, shape={n_features, 1}
Model weights after fitting.
b_ : 1d-array, shape={1,}
Bias unit after fitting.
cost_ : list
Sum of squared errors after each epoch.
Examples
-----------
For usage examples, please see
http://rasbt.github.io/mlxtend/user_guide/classifier/Adaline/
"""
def __init__(self, eta=0.01, epochs=50,
minibatches=None, random_seed=None,
print_progress=0):
_BaseModel.__init__(self)
_IterativeModel.__init__(self)
_Classifier.__init__(self)
self.eta = eta
self.minibatches = minibatches
self.epochs = epochs
self.random_seed = random_seed
self.print_progress = print_progress
self._is_fitted = False
def _fit(self, X, y, init_params=True):
self._check_target_array(y, allowed={(0, 1)})
y_data = np.where(y == 0, -1., 1.)
if init_params:
self.b_, self.w_ = self._init_params(
weights_shape=(X.shape[1], 1),
bias_shape=(1,),
random_seed=self.random_seed)
self.cost_ = []
if self.minibatches is None:
self.b_, self.w_ = self._normal_equation(X, y_data)
# Gradient descent or stochastic gradient descent learning
else:
self.init_time_ = time()
rgen = np.random.RandomState(self.random_seed)
for i in range(self.epochs):
for idx in self._yield_minibatches_idx(
rgen=rgen,
n_batches=self.minibatches,
data_ary=y_data,
shuffle=True):
y_val = self._net_input(X[idx])
errors = (y_data[idx] - y_val)
self.w_ += (self.eta *
X[idx].T.dot(errors).reshape(self.w_.shape))
self.b_ += self.eta * errors.sum()
cost = self._sum_squared_error_cost(y_data, self._net_input(X))
self.cost_.append(cost)
if self.print_progress:
self._print_progress(iteration=(i + 1),
n_iter=self.epochs,
cost=cost)
return self
def _sum_squared_error_cost(self, y, y_val):
errors = (y - y_val)
return (errors**2).sum() / 2.0
def _normal_equation(self, X, y):
"""Solve linear regression analytically."""
Xb = np.hstack((np.ones((X.shape[0], 1)), X))
w = np.zeros(X.shape[1])
z = np.linalg.inv(np.dot(Xb.T, Xb))
params = np.dot(z, np.dot(Xb.T, y))
b, w = np.array([params[0]]), params[1:].reshape(X.shape[1], 1)
return b, w
def _net_input(self, X):
"""Compute the linear net input."""
return (np.dot(X, self.w_) + self.b_).flatten()
def _predict(self, X):
return np.where(self._net_input(X) < 0.0, 0, 1)