Tożsamości, zespolona definicja sin i cos oraz formatowanie

This commit is contained in:
RobertBendun 2022-02-27 22:49:26 +01:00
parent 6e4a9ed306
commit 13faa05473

View File

@ -7,18 +7,28 @@
\usepackage{gensymb}
\usepackage{polski}
\usepackage{multirow}
\usepackage{multicol}
\title{Trygonometria i liczby zespolone \\ \large Algorytmy kwantowe}
\setlength{\multicolsep}{0pt}
\usepackage{titlesec}
\titleformat{\section} {\normalfont\Large\bfseries}{}{0em}{}
\titleformat{\subsection}{\normalfont\large\bfseries}{}{0em}{}
\title{\textbf{Algorytmy kwantowe}: trygonometria i liczby zespolone}
\date{2021-02-27}
\author{Robert Bendun}
\newcommand{\mi}{\mathrm{i}}
\author{Robert Bendun (\texttt{robert@bendun.cc})}
\newcommand{\mi}{{i\mkern1mu}}
\renewcommand{\arraystretch}{1.5}
\begin{document}
\maketitle
\begin{center}
\makeatletter
{\Large \@title} \\ \@date, \@author \\
\makeatother
\end{center}
\section{Trygonometria}
@ -64,9 +74,22 @@
\end{tabular}
\end{center}
\subsection{Tożsamości}
\begin{multicols}{2}
\begin{description}
\item $ \sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta $
\item $ \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta $
\item $ \sin2\alpha = 2\sin\alpha\cos\alpha $
\item $ \cos2\alpha = 2\cos^2\alpha - 1 $
\end{description}
\end{multicols}
\section{Liczby zespolone}
\subsection{Postać algebraiczna}
\begin{multicols}{2}
\begin{description}
\item $ \alpha \pm \beta = \left( a + b\mi \right) \pm \left( c + d\mi \right)
= \left( a \pm c \right) + \left( b \pm d \right)\mi$
@ -77,6 +100,7 @@
\item[Sprzężenie] $ \overline{a + \mi b} = a - b\mi $
\item $ \alpha\overline{\alpha} = (a + b\mi)(a - b\mi) = a^2 + b^2 = |\alpha|^2 $
\end{description}
\end{multicols}
\subsection{Postać trygonometryczna}
@ -85,15 +109,20 @@ $ z = |z|\left( \frac{a}{|z|} + \frac{b}{|z|}\mi \right) $ ponieważ $ \sin\rho
$$ z = a + b\mi = |z|(\cos\rho + \mi\sin\rho) $$
\begin{description}
\item $ xy = |x|(\cos \alpha + \mi\sin\alpha) \times |y|(\cos \beta + \mi\sin\beta) =
|x||y|\left[\cos(\alpha + \beta) + \mi\sin(\alpha+\beta)\right]$
\item $ \frac{x}{y} = |x|(\cos \alpha + \mi\sin\alpha) \div |y|(\cos \beta + \mi\sin\beta) =
\frac{|x|}{|y|}\left[\cos(\alpha - \beta) + \mi\sin(\alpha-\beta)\right]$
\item[Wzór de Moivre'a] $ z^n = |z|^n\left(\cos(n\rho) + \mi\sin(n\rho)\right) $
\item[Pierwiastki] $ \sqrt[n]{ z } = \left\{ \sqrt[n]{|z|} \left(\cos \frac{\rho + 2k\pi}{n} + \mi\sin \frac{\rho + 2k\pi}{n} \right) \mid k = 0, 1, 2, ..., n-1 \right\} $
\item[Wzór Eulera] $ e^{\theta\mi} = \cos\theta + \mi\sin\theta $
\end{description}
$$ \sin\theta = \frac{e^{\mi\theta} - e^{-\mi\theta}}{2\mi} \quad\quad\quad
\cos\theta = \frac{e^{\mi\theta} + e^{-\mi\theta}}{2\mi} $$
\end{document}