95 lines
3.6 KiB
Python
95 lines
3.6 KiB
Python
import numpy
|
|
|
|
import ga_methods
|
|
|
|
# Genetic Algorithm
|
|
if __name__ == "__main__":
|
|
|
|
"""
|
|
The y=target is to maximize this equation ASAP:
|
|
y = w1x1+w2x2+w3x3+w4x4+w5x5+6wx6
|
|
where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7)
|
|
What are the best values for the 6 weights w1 to w6?
|
|
We are going to use the genetic algorithm for the best possible values after a number of generations.
|
|
"""
|
|
|
|
# Inputs of the equation.
|
|
equation_inputs = [4, -2, 3.5, 5, -11, -4.7]
|
|
|
|
# Number of the weights we are looking to optimize.
|
|
num_weights = len(equation_inputs)
|
|
|
|
"""
|
|
Genetic algorithm parameters:
|
|
Mating pool size
|
|
Population size
|
|
"""
|
|
sol_per_pop = 8
|
|
num_parents_mating = 4
|
|
|
|
# Defining the population size.
|
|
pop_size = (sol_per_pop,
|
|
num_weights) # The population will have sol_per_pop chromosome where each chromosome has num_weights genes.
|
|
# Creating the initial population.
|
|
new_population = numpy.random.uniform(low=-4.0, high=4.0, size=pop_size)
|
|
print(new_population)
|
|
|
|
"""
|
|
new_population[0, :] = [2.4, 0.7, 8, -2, 5, 1.1]
|
|
new_population[1, :] = [-0.4, 2.7, 5, -1, 7, 0.1]
|
|
new_population[2, :] = [-1, 2, 2, -3, 2, 0.9]
|
|
new_population[3, :] = [4, 7, 12, 6.1, 1.4, -4]
|
|
new_population[4, :] = [3.1, 4, 0, 2.4, 4.8, 0]
|
|
new_population[5, :] = [-2, 3, -7, 6, 3, 3]
|
|
"""
|
|
|
|
best_outputs = []
|
|
num_generations = 1000
|
|
for generation in range(num_generations):
|
|
print("Generation : ", generation)
|
|
# Measuring the fitness of each chromosome in the population.
|
|
fitness = ga_methods.cal_pop_fitness(equation_inputs, new_population)
|
|
print("Fitness")
|
|
print(fitness)
|
|
|
|
best_outputs.append(numpy.max(numpy.sum(new_population * equation_inputs, axis=1)))
|
|
# The best result in the current iteration.
|
|
print("Best result : ", numpy.max(numpy.sum(new_population * equation_inputs, axis=1)))
|
|
|
|
# Selecting the best parents in the population for mating.
|
|
parents = ga_methods.select_mating_pool(new_population, fitness,
|
|
num_parents_mating)
|
|
print("Parents")
|
|
print(parents)
|
|
|
|
# Generating next generation using crossover.
|
|
offspring_crossover = ga_methods.crossover(parents,
|
|
offspring_size=(pop_size[0] - parents.shape[0], num_weights))
|
|
print("Crossover")
|
|
print(offspring_crossover)
|
|
|
|
# Adding some variations to the offspring using mutation.
|
|
offspring_mutation = ga_methods.mutation(offspring_crossover, num_mutations=2)
|
|
print("Mutation")
|
|
print(offspring_mutation)
|
|
|
|
# Creating the new population based on the parents and offspring.
|
|
new_population[0:parents.shape[0], :] = parents
|
|
new_population[parents.shape[0]:, :] = offspring_mutation
|
|
|
|
# Getting the best solution after iterating finishing all generations.
|
|
# At first, the fitness is calculated for each solution in the final generation.
|
|
fitness = ga_methods.cal_pop_fitness(equation_inputs, new_population)
|
|
# Then return the index of that solution corresponding to the best fitness.
|
|
best_match_idx = numpy.where(fitness == numpy.max(fitness))
|
|
|
|
print("Best solution : ", new_population[best_match_idx, :])
|
|
print("Best solution fitness : ", fitness[best_match_idx])
|
|
|
|
import matplotlib.pyplot
|
|
|
|
matplotlib.pyplot.plot(best_outputs)
|
|
matplotlib.pyplot.xlabel("Iteration")
|
|
matplotlib.pyplot.ylabel("Fitness")
|
|
matplotlib.pyplot.show()
|