add decision tree

This commit is contained in:
Dominik Cupał 2021-06-23 11:07:35 +02:00
parent 8872992b6b
commit 5a6e5181e8
13 changed files with 224 additions and 6 deletions

View File

@ -34,7 +34,7 @@ Change sizes map in config.py
VERTICAL_NUM_OF_FIELDS = 3
HORIZONTAL_NUM_OF_FIELDS = 3
```
\
#### 4.1 Save generated map:
```bash
python main.py --save-map

View File

@ -44,6 +44,7 @@ class App:
if keys[pygame.K_w]:
self.__tractor.move()
self.__tractor.choose_action()
print(self.__tractor)
if keys[pygame.K_n]:

View File

@ -66,6 +66,15 @@ class Board:
print(f"{j} - {type(self.__fields[i][j]).__name__}", end=" | ")
print()
def convert_fields_to_vectors(self) -> list[list]:
list_of_vectors = []
for i in range(HORIZONTAL_NUM_OF_FIELDS):
list_of_vectors.append([])
for j in range(VERTICAL_NUM_OF_FIELDS):
list_of_vectors[i].append(self.__fields[i][j].transform())
print(list_of_vectors)
return list_of_vectors
def convert_fields_to_list_of_types(self) -> list:
data = []
for i in range(HORIZONTAL_NUM_OF_FIELDS):

68
app/decision_tree.py Normal file
View File

@ -0,0 +1,68 @@
#!/usr/bin/python3
import os
from typing import Union
import pydotplus
import pandas as pd
from joblib import dump, load
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz, export_text
from app.weather import Weather
from config import *
class DecisionTree:
WEATHER = {W_SUNNY: 0, W_CLOUDY: 1, W_SNOW: 2, W_RAINY: 3}
SEASON = {S_AUTUMN: 0, S_WINTER: 1, S_SPRING: 2, S_SUMMER: 3}
FEATURES = ['Season', 'Weather', 'Fertilize', 'Hydrate', 'Sow', 'Harvest', 'Action']
def __int__(self):
self.tree = None
def learn_tree(self) -> None:
path = os.path.join(DATA_DIR, MODEL_TREE_FILENAME)
if os.path.exists(path):
self.tree = load(path)
else:
# read data
training_data = pd.read_csv(os.path.join(DATA_DIR, DATA_TRAINING_FOR_DECISION_TREE))
print(training_data.head())
training_data = self.map_data(training_data)
# print(training_data)
X = training_data[self.FEATURES[:-1]]
Y = training_data[self.FEATURES[-1]]
self.tree = DecisionTreeClassifier()
self.tree = self.tree.fit(X, Y)
dump(self.tree, path)
text = export_text(self.tree, feature_names=self.FEATURES[:-1])
print(text)
data = export_graphviz(self.tree, out_file=None, feature_names=self.FEATURES[:-1])
graph = pydotplus.graph_from_dot_data(data)
graph.write_png(os.path.join(DATA_DIR, IMG_DECISION_TREE))
def map_data(self, data: Union[pd.Series, pd.DataFrame]) -> Union[pd.Series, pd.DataFrame]:
# print(data)
data['Season'] = data['Season'].map(DecisionTree.SEASON)
data['Weather'] = data['Weather'].map(DecisionTree.WEATHER)
return data
def predict(self, vector: Union[pd.Series, pd.DataFrame]) -> str:
print(vector)
x = self.map_data(vector)
action = self.tree.predict(x)
return action
def make_decision(self, weather: Weather, v: list):
s, w = weather.randomize_weather()
tree = DecisionTree()
tree.learn_tree()
final_vector = [s, w] + v
print(final_vector)
df = pd.DataFrame([final_vector])
df.columns = DecisionTree.FEATURES[:-1]
return tree.predict(df)

View File

@ -27,6 +27,9 @@ class Crops(Field):
self.weight = 1.0
self._value = VALUE_OF_CROPS
def transform(self) -> list:
return [0, 0, 0, 1]
class Plant(Field):
def __init__(self, img_path: str):
@ -34,6 +37,9 @@ class Plant(Field):
self.is_hydrated = False
self._value = VALUE_OF_PLANT
def transform(self) -> list:
return [0, 1, 0, 0]
class Clay(Soil):
def __init__(self):
@ -41,6 +47,9 @@ class Clay(Soil):
self.is_fertilized = False
self._value = VALUE_OF_CLAY
def transform(self) -> list:
return [1, 0, 0, 0]
class Sand(Soil):
def __init__(self):
@ -49,6 +58,12 @@ class Sand(Soil):
self.is_hydrated = False
self._value = VALUE_OF_SAND
def transform(self) -> list:
if not self.is_hydrated :
return [0, 1, 0, 0]
else:
return [0, 0, 1, 0]
class Grass(Plant):
def __init__(self):

View File

@ -17,6 +17,8 @@ from app.fields import CROPS, PLANTS, Crops, Sand, Clay, Field
from config import *
from app.fields import Plant, Soil, Crops
from app.decision_tree import DecisionTree
from app.weather import Weather
class Tractor(BaseField):
@ -30,6 +32,8 @@ class Tractor(BaseField):
self.__harvested_corps = []
self.__fuel = 10
self.__neural_network = None
self.__tree = DecisionTree()
self.__weather = Weather()
def draw(self, screen: pygame.Surface) -> None:
self.draw_field(screen, self.__pos_x + FIELD_SIZE / 2, self.__pos_y + FIELD_SIZE / 2,
@ -304,3 +308,19 @@ class Tractor(BaseField):
time.sleep(1)
is_running.clear()
def choose_action(self) -> None:
vectors = self.__board.convert_fields_to_vectors()
print(vectors)
coords = None
action = None
for i in range(HORIZONTAL_NUM_OF_FIELDS):
for j in range(VERTICAL_NUM_OF_FIELDS):
action = self.__tree.make_decision(self.__weather, vectors[i][j])
if action != A_DO_NOTHING:
coords = (i, j)
break
print(coords, action)
if coords is not None:
# astar coords
pass

28
app/weather.py Normal file
View File

@ -0,0 +1,28 @@
#!/usr/bin/python3
import random
from config import *
class Weather:
def __init__(self):
self.months = (S_WINTER, S_WINTER, S_SPRING, S_SPRING, S_SPRING, S_SUMMER,
S_SUMMER, S_SUMMER, S_AUTUMN, S_AUTUMN, S_AUTUMN, S_WINTER)
self.current_month = 0
def randomize_weather(self) -> tuple[str, str]:
season = self.months[self.current_month]
if season == S_WINTER:
weather = random.choices([W_SNOW, W_CLOUDY])
elif season == S_SUMMER:
weights = [0.5, 0.3, 0.2]
weather = random.choices([W_SUNNY, W_CLOUDY, W_RAINY], weights)
elif season == S_SPRING:
weights = [0.3, 0.5, 0.2]
weather = random.choices([W_SUNNY, W_CLOUDY, W_RAINY], weights)
else:
weights = [0.2, 0.3, 0.4]
weather = random.choices([W_SUNNY, W_CLOUDY, W_RAINY], weights)
self.current_month = (self.current_month + 1) % len(self.months)
return season, weather[0]

View File

@ -9,11 +9,14 @@ __all__ = (
'SAND', 'CLAY', 'GRASS', 'CORN', 'SUNFLOWER',
'FIELD_TYPES', 'TIME_OF_GROWING', 'AMOUNT_OF_CROPS',
'M_GO_FORWARD', 'M_ROTATE_LEFT', 'M_ROTATE_RIGHT',
'S_AUTUMN', 'S_SPRING', 'S_SUMMER', 'S_WINTER', 'TYPES_OF_SEASON',
'W_SUNNY', 'W_CLOUDY', 'W_SNOW', 'W_RAINY', 'TYPES_OF_WEATHER',
'A_SOW', 'A_HARVEST', 'A_HYDRATE', 'A_FERTILIZE', 'A_DO_NOTHING',
'D_NORTH', 'D_EAST', 'D_SOUTH', 'D_WEST',
'TYPES_OF_ACTION', 'D_NORTH', 'D_EAST', 'D_SOUTH', 'D_WEST',
'VALUE_OF_CROPS', 'VALUE_OF_PLANT', 'VALUE_OF_SAND', 'VALUE_OF_CLAY',
'MAP_FILE_NAME', 'JSON', 'SAVE_MAP', 'LOAD_MAP',
'TRAINING_SET_DIR', 'TEST_SET_DIR', 'ADAPTED_IMG_DIR', 'MODEL_DIR'
'TRAINING_SET_DIR', 'TEST_SET_DIR', 'ADAPTED_IMG_DIR', 'MODEL_DIR',
'DATA_DIR','IMG_DECISION_TREE','MODEL_TREE_FILENAME','DATA_TRAINING_FOR_DECISION_TREE'
)
# Board settings:
@ -31,12 +34,17 @@ CAPTION = 'Tractor'
BASE_DIR = os.path.dirname(__file__)
RESOURCE_DIR = os.path.join(BASE_DIR, 'resources')
MAP_DIR = os.path.join(BASE_DIR, 'maps')
DATA_DIR = os.path.join(BASE_DIR, 'data')
MAP_FILE_NAME = 'map'
TRAINING_SET_DIR = os.path.join(RESOURCE_DIR, 'smaller_train')
TEST_SET_DIR = os.path.join(RESOURCE_DIR, 'smaller_test')
ADAPTED_IMG_DIR = os.path.join(RESOURCE_DIR, "adapted_images")
MODEL_DIR = os.path.join(RESOURCE_DIR, 'saved_model')
MODEL_TREE_FILENAME = 'tree_model.joblib'
IMG_DECISION_TREE = 'decision_tree.png'
DATA_TRAINING_FOR_DECISION_TREE = 'data_training.csv'
# Picture format
PNG = "png"
@ -75,6 +83,7 @@ A_HARVEST = "harvest"
A_HYDRATE = "hydrate"
A_FERTILIZE = "fertilize"
A_DO_NOTHING = "do nothing"
TYPES_OF_ACTION = [A_SOW, A_HARVEST, A_HYDRATE, A_FERTILIZE, A_DO_NOTHING]
# Costs fields:
VALUE_OF_CROPS = 1
@ -82,6 +91,21 @@ VALUE_OF_PLANT = 4
VALUE_OF_SAND = 7
VALUE_OF_CLAY = 10
# Weather
W_SUNNY = 'Sunny'
W_CLOUDY = 'Cloudy'
W_SNOW = 'Snow'
W_RAINY = 'Rainy'
TYPES_OF_WEATHER = [W_SUNNY, W_CLOUDY, W_SNOW, W_RAINY]
# Seasons
S_AUTUMN = 'Autumn'
S_WINTER = 'Winter'
S_SPRING = 'Spring'
S_SUMMER = 'Summer'
TYPES_OF_SEASON = [S_AUTUMN, S_WINTER, S_SPRING, S_SUMMER]
# Times
TIME_OF_GROWING = 2
TIME_OF_MOVING = 2

0
data/.gitignore vendored Normal file
View File

49
data/data_training.csv Normal file
View File

@ -0,0 +1,49 @@
Season,Weather,Fertilize,Hydrate,Sow,Harvest,Action
Winter,Snow,0,0,0,1,do nothing
Winter,Snow,0,0,1,0,do nothing
Winter,Snow,0,1,0,0,do nothing
Winter,Snow,1,0,0,0,do nothing
Winter,Cloudy,0,0,0,1,do nothing
Winter,Cloudy,0,0,1,0,do nothing
Winter,Cloudy,0,1,0,0,do nothing
Winter,Cloudy,1,0,0,0,do nothing
Autumn,Cloudy,0,0,0,1,harvest
Autumn,Cloudy,0,0,1,0,do nothing
Autumn,Cloudy,0,1,0,0,do nothing
Autumn,Cloudy,1,0,0,0,fertilize
Autumn,Sunny,0,0,0,1,harvest
Autumn,Sunny,0,0,1,0,Plant
Autumn,Sunny,0,1,0,0,hydrate
Autumn,Sunny,1,0,0,0,fertilize
Autumn,Rainy,0,0,0,1,harvest
Autumn,Rainy,0,0,1,0,do nothing
Autumn,Rainy,0,1,0,0,do nothing
Autumn,Rainy,1,0,0,0,do nothing
Spring,Sunny,0,0,0,1,harvest
Spring,Sunny,0,0,1,0,do nothing
Spring,Sunny,0,1,0,0,hydrate
Spring,Sunny,1,0,0,0,do nothing
Spring,Cloudy,0,0,0,1,harvest
Spring,Cloudy,0,0,1,0,do nothing
Spring,Cloudy,0,1,0,0,hydrate
Spring,Cloudy,1,0,0,0,do nothing
Spring,Rainy,0,0,0,1,harvest
Spring,Rainy,0,0,1,0,do nothing
Spring,Rainy,0,1,0,0,do nothing
Spring,Rainy,1,0,0,0,do nothing
Spring,Rainy,0,0,0,1,harvest
Spring,Rainy,0,0,1,0,do nothing
Spring,Rainy,0,1,0,0,do nothing
Spring,Rainy,1,0,0,0,do nothing
Summer,Rainy,0,0,0,1,harvest
Summer,Rainy,0,0,1,0,do nothing
Summer,Rainy,0,1,0,0,do nothing
Summer,Rainy,1,0,0,0,do nothing
Summer,Sunny,0,0,0,1,harvest
Summer,Sunny,0,0,1,0,do nothing
Summer,Sunny,0,1,0,0,hydrate
Summer,Sunny,1,0,0,0,fertilize
Summer,Cloudy,0,0,0,1,harvest
Summer,Cloudy,0,0,1,0,do nothing
Summer,Cloudy,0,1,0,0,hydrate
Summer,Cloudy,1,0,0,0,fertilize
1 Season Weather Fertilize Hydrate Sow Harvest Action
2 Winter Snow 0 0 0 1 do nothing
3 Winter Snow 0 0 1 0 do nothing
4 Winter Snow 0 1 0 0 do nothing
5 Winter Snow 1 0 0 0 do nothing
6 Winter Cloudy 0 0 0 1 do nothing
7 Winter Cloudy 0 0 1 0 do nothing
8 Winter Cloudy 0 1 0 0 do nothing
9 Winter Cloudy 1 0 0 0 do nothing
10 Autumn Cloudy 0 0 0 1 harvest
11 Autumn Cloudy 0 0 1 0 do nothing
12 Autumn Cloudy 0 1 0 0 do nothing
13 Autumn Cloudy 1 0 0 0 fertilize
14 Autumn Sunny 0 0 0 1 harvest
15 Autumn Sunny 0 0 1 0 Plant
16 Autumn Sunny 0 1 0 0 hydrate
17 Autumn Sunny 1 0 0 0 fertilize
18 Autumn Rainy 0 0 0 1 harvest
19 Autumn Rainy 0 0 1 0 do nothing
20 Autumn Rainy 0 1 0 0 do nothing
21 Autumn Rainy 1 0 0 0 do nothing
22 Spring Sunny 0 0 0 1 harvest
23 Spring Sunny 0 0 1 0 do nothing
24 Spring Sunny 0 1 0 0 hydrate
25 Spring Sunny 1 0 0 0 do nothing
26 Spring Cloudy 0 0 0 1 harvest
27 Spring Cloudy 0 0 1 0 do nothing
28 Spring Cloudy 0 1 0 0 hydrate
29 Spring Cloudy 1 0 0 0 do nothing
30 Spring Rainy 0 0 0 1 harvest
31 Spring Rainy 0 0 1 0 do nothing
32 Spring Rainy 0 1 0 0 do nothing
33 Spring Rainy 1 0 0 0 do nothing
34 Spring Rainy 0 0 0 1 harvest
35 Spring Rainy 0 0 1 0 do nothing
36 Spring Rainy 0 1 0 0 do nothing
37 Spring Rainy 1 0 0 0 do nothing
38 Summer Rainy 0 0 0 1 harvest
39 Summer Rainy 0 0 1 0 do nothing
40 Summer Rainy 0 1 0 0 do nothing
41 Summer Rainy 1 0 0 0 do nothing
42 Summer Sunny 0 0 0 1 harvest
43 Summer Sunny 0 0 1 0 do nothing
44 Summer Sunny 0 1 0 0 hydrate
45 Summer Sunny 1 0 0 0 fertilize
46 Summer Cloudy 0 0 0 1 harvest
47 Summer Cloudy 0 0 1 0 do nothing
48 Summer Cloudy 0 1 0 0 hydrate
49 Summer Cloudy 1 0 0 0 fertilize

BIN
data/decision_tree.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 121 KiB

BIN
data/tree_model.joblib Normal file

Binary file not shown.

View File

@ -2,3 +2,7 @@ pygame==2.0.1
tensorflow~=2.5.0
numpy~=1.19.5
pillow~=8.2.0
joblib~=1.0.1
scikit-learn~=0.24.2
pandas~=1.2.5
pydotplus~=2.0.2