neural
This commit is contained in:
parent
a51f3e31dc
commit
8ac677941c
45
tiles.py
45
tiles.py
@ -13,7 +13,6 @@ import matplotlib.pyplot as plt
|
||||
import os
|
||||
import cv2
|
||||
from tqdm import tqdm
|
||||
import keras
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Dense, Dropout, Activation, Flatten
|
||||
from keras.layers import Conv2D, MaxPooling2D
|
||||
@ -620,6 +619,10 @@ def learn_neural_network(X, y):
|
||||
model.add(Activation('relu'))
|
||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
|
||||
model.add(Conv2D(64, (3, 3)))
|
||||
model.add(Activation('relu'))
|
||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
|
||||
model.add(Flatten())
|
||||
|
||||
model.add(Dense(64))
|
||||
@ -631,7 +634,7 @@ def learn_neural_network(X, y):
|
||||
optimizer='adam',
|
||||
metrics=['accuracy'])
|
||||
|
||||
model.fit(X, y, batch_size=1, epochs=10, validation_batch_size=0.1)
|
||||
model.fit(X, y, batch_size=32, epochs=10, validation_batch_size=0.1)
|
||||
|
||||
return model
|
||||
|
||||
@ -649,38 +652,15 @@ def predict(model,filepath):
|
||||
|
||||
def result(prediction):
|
||||
if prediction[0][0] >= 0.5:
|
||||
print(prediction)
|
||||
print(math.ceil(prediction[0][0]))
|
||||
print('No pepperoni')
|
||||
elif prediction[0][0] < 0.5:
|
||||
print(prediction)
|
||||
print(math.floor(prediction[0][0]))
|
||||
print("Pepperoni")
|
||||
|
||||
|
||||
#####################neural network##############################
|
||||
|
||||
DATADIR = "C:/Datasets/Ingridients"
|
||||
CATEGORIES = ["yes", "no"]
|
||||
IMG_SIZE = 90
|
||||
training_data = []
|
||||
|
||||
create_training_data()
|
||||
X = []
|
||||
y = []
|
||||
|
||||
for features, label in training_data:
|
||||
X.append(features)
|
||||
y.append(label)
|
||||
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
|
||||
y = np.array(y)
|
||||
"""
|
||||
m = learn_neural_network(X, y)
|
||||
prediction = m.predict([prepare_img('p1.jpg')])
|
||||
print(prediction[0][0])
|
||||
result(prediction)
|
||||
"""
|
||||
|
||||
#######################################################
|
||||
|
||||
map = Map()
|
||||
waiter = Waiter([32, 32])
|
||||
|
||||
@ -703,6 +683,7 @@ for table in tables:
|
||||
|
||||
client = Client(generate_client())
|
||||
|
||||
neural_prediction_in = False
|
||||
|
||||
def main():
|
||||
direction = []
|
||||
@ -810,10 +791,16 @@ def main():
|
||||
image = pygame.image.load(path)
|
||||
first_time = False
|
||||
display_img(display, image)
|
||||
prediction = predict(model, path)
|
||||
result(prediction)
|
||||
if neural_prediction_in is False:
|
||||
prediction = predict(model, path)
|
||||
result(prediction)
|
||||
neural_prediction_in = True
|
||||
|
||||
else:
|
||||
first_time = True
|
||||
neural_prediction_in = False
|
||||
|
||||
|
||||
|
||||
pygame.display.update()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user