This commit is contained in:
Michał Szuszert 2022-05-26 21:04:01 +02:00
parent a51f3e31dc
commit 8ac677941c

View File

@ -13,7 +13,6 @@ import matplotlib.pyplot as plt
import os
import cv2
from tqdm import tqdm
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
@ -620,6 +619,10 @@ def learn_neural_network(X, y):
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
@ -631,7 +634,7 @@ def learn_neural_network(X, y):
optimizer='adam',
metrics=['accuracy'])
model.fit(X, y, batch_size=1, epochs=10, validation_batch_size=0.1)
model.fit(X, y, batch_size=32, epochs=10, validation_batch_size=0.1)
return model
@ -649,38 +652,15 @@ def predict(model,filepath):
def result(prediction):
if prediction[0][0] >= 0.5:
print(prediction)
print(math.ceil(prediction[0][0]))
print('No pepperoni')
elif prediction[0][0] < 0.5:
print(prediction)
print(math.floor(prediction[0][0]))
print("Pepperoni")
#####################neural network##############################
DATADIR = "C:/Datasets/Ingridients"
CATEGORIES = ["yes", "no"]
IMG_SIZE = 90
training_data = []
create_training_data()
X = []
y = []
for features, label in training_data:
X.append(features)
y.append(label)
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y = np.array(y)
"""
m = learn_neural_network(X, y)
prediction = m.predict([prepare_img('p1.jpg')])
print(prediction[0][0])
result(prediction)
"""
#######################################################
map = Map()
waiter = Waiter([32, 32])
@ -703,6 +683,7 @@ for table in tables:
client = Client(generate_client())
neural_prediction_in = False
def main():
direction = []
@ -810,10 +791,16 @@ def main():
image = pygame.image.load(path)
first_time = False
display_img(display, image)
if neural_prediction_in is False:
prediction = predict(model, path)
result(prediction)
neural_prediction_in = True
else:
first_time = True
neural_prediction_in = False
pygame.display.update()