forked from kubapok/auta-public
52 KiB
52 KiB
import numpy as np
import matplotlib
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
#with open('train/train.tsv') as file:
# for line in file.readlines()[:10]:
# print(line)
#with open('names') as file:
# for line in file.readlines():
# header.append(line.strip())
#train
with open('names') as file:
header = file.read().rstrip('\n').split('\t')
train_path='train/train.tsv'
train = pd.read_csv(train_path, sep='\t', names=header)
#removing discrete value
train.drop('brand', inplace=True, axis=1)
train.drop('engineType', inplace=True, axis=1)
#output
y_train = pd.DataFrame(train['price'])
#removing output
train.drop('price', inplace=True, axis=1)
x_train = pd.DataFrame(train)
model = LinearRegression()
model.fit(x_train, y_train)
header=['price','year','brand','engineType','engineCapacity']
#dev
dev = pd.read_csv('dev-0/in.tsv', sep='\t', names=header)
print(dev)
price year brand engineType engineCapacity 0 77000 2015 Ford diesel 2000 1 186146 2006 Mercedes-Benz benzyna 1498 2 192000 2007 Nissan diesel 2500 3 220000 2003 Ford diesel 1997 4 248000 2008 Volkswagen diesel 1900 .. ... ... ... ... ... 995 146000 2004 Opel diesel 1686 996 19323 2015 Renault benzyna 1598 997 27561 2016 Toyota diesel 1598 998 155000 2012 Hyundai benzyna 1600 999 31438 2015 Land diesel 3000 [1000 rows x 5 columns]
with open('dev-0/expected.tsv', 'r') as file:
y_dev = np.array([float(x.rstrip('\n')) for x in file.readlines()])
dev.drop('brand', inplace=True, axis=1)
dev.drop('engineType', inplace=True, axis=1)
print(dev)
price year engineCapacity 0 77000 2015 2000 1 186146 2006 1498 2 192000 2007 2500 3 220000 2003 1997 4 248000 2008 1900 .. ... ... ... 995 146000 2004 1686 996 19323 2015 1598 997 27561 2016 1598 998 155000 2012 1600 999 31438 2015 3000 [1000 rows x 3 columns]
x_dev = pd.DataFrame(dev)
predict = model.predict(x_dev)
print(predict)
[[ 7.72392063e+04] [ 1.21746103e+04] [ 4.92626456e+04] [ 1.37190947e+04] [ 2.40946032e+04] [ 7.88318837e+04] [ 4.47318598e+04] [ 9.44511674e+03] [-8.77567502e+03] [ 1.34841352e+04] [ 2.51235429e+04] [ 8.25232472e+04] [ 5.73949851e+03] [ 1.47356316e+03] [ 3.58932978e+04] [ 2.41566138e+04] [ 6.28327771e+04] [ 9.44318776e+04] [ 3.63165742e+04] [ 6.93253866e+03] [-4.87879907e+01] [ 7.40420208e+03] [-8.74108566e+03] [ 5.85018256e+04] [-5.31833451e+03] [ 6.90090820e+04] [ 7.90958938e+04] [ 1.21888104e+04] [ 1.01686280e+04] [ 3.72544993e+04] [ 7.59714805e+04] [ 6.35250818e+04] [ 6.65801358e+03] [ 4.95984416e+04] [ 3.91985020e+04] [ 5.94405897e+04] [ 3.25405996e+04] [ 2.49435551e+04] [ 4.25956589e+04] [ 7.14460623e+04] [ 7.49405450e+04] [ 2.85287223e+04] [ 3.90573961e+04] [ 6.80943863e+04] [ 1.23555014e+04] [ 1.21925126e+05] [ 9.18307794e+04] [ 9.82420042e+03] [ 4.28924356e+04] [ 5.07739058e+04] [ 7.50514879e+04] [-7.25748788e+03] [ 9.55299727e+04] [ 3.95122188e+04] [ 1.19340537e+04] [-6.55254554e+03] [-4.10177479e+03] [ 2.49776566e+04] [ 7.10790038e+04] [ 2.06810033e+04] [ 6.23198797e+04] [-1.07284521e+04] [-6.46381409e+02] [ 7.30727534e+04] [ 8.30811199e+04] [ 2.86989359e+04] [-7.03756627e+03] [ 8.72640461e+04] [ 3.31901123e+04] [ 1.88453572e+03] [ 2.06604184e+04] [ 3.29929632e+04] [ 1.89676836e+04] [ 1.95236628e+04] [ 1.67547668e+05] [ 4.85499441e+04] [ 6.27455250e+04] [ 4.20967880e+04] [ 6.68641130e+04] [ 1.66520495e+04] [ 4.76051559e+04] [ 2.03516912e+04] [ 4.52221063e+04] [ 1.66323131e+04] [ 1.79557880e+04] [ 1.92879834e+04] [ 5.65858379e+04] [ 4.10082404e+04] [ 4.05624418e+04] [ 2.35217266e+04] [ 4.10092641e+04] [ 3.26970987e+04] [ 5.52463184e+04] [ 4.53240110e+04] [ 3.34969210e+03] [ 2.65136699e+03] [ 6.43185703e+04] [ 6.01867692e+04] [ 3.64334293e+04] [ 3.01009442e+04] [ 6.47733211e+03] [ 9.33718072e+03] [ 1.01767327e+04] [ 1.96917839e+04] [ 5.89513195e+03] [ 2.51338800e+04] [ 2.62510931e+04] [ 4.24081831e+04] [ 6.31779344e+04] [ 1.97391316e+04] [ 7.68646191e+04] [-1.53232910e+04] [ 5.42528855e+04] [ 5.99216155e+04] [ 8.74438207e+03] [ 4.07106246e+04] [ 1.17569351e+04] [ 3.42320268e+04] [ 5.58880945e+04] [ 2.67149647e+04] [ 2.44165413e+04] [ 3.06502434e+04] [-2.47116768e+04] [ 3.02109289e+04] [ 6.69114096e+04] [ 7.51099605e+04] [-2.01692811e+04] [ 4.42081612e+04] [ 2.20836791e+04] [ 4.64605808e+04] [ 1.23637492e+04] [-7.60995807e+03] [ 4.57435502e+04] [ 3.78355245e+04] [-2.88493424e+04] [ 6.29914716e+04] [ 1.00418697e+05] [ 5.67414418e+04] [ 3.16945267e+04] [ 6.27334737e+04] [ 1.47491206e+04] [ 5.12304959e+04] [ 6.98188482e+04] [ 1.79823749e+04] [ 6.62751512e+04] [ 5.18421259e+04] [ 9.08771880e+04] [ 1.48160390e+04] [ 1.08181408e+04] [ 5.76520947e+04] [ 3.22203519e+04] [ 1.80650050e+04] [ 4.64112525e+04] [-3.87907792e+04] [ 7.49071294e+04] [-1.39798993e+04] [ 7.57818485e+04] [ 1.77386762e+04] [ 5.87321021e+04] [ 6.03558654e+04] [ 3.63825302e+04] [ 6.71251159e+04] [ 6.72245534e+03] [-3.56414333e+03] [ 3.00644261e+03] [-6.20961682e+03] [ 4.15049154e+04] [ 3.80286210e+04] [ 2.62211308e+04] [ 8.18037844e+04] [ 6.12139209e+04] [ 7.10600141e+04] [ 2.01274133e+04] [ 2.25298349e+04] [ 7.50498152e+04] [ 3.69820172e+04] [ 7.68439140e+04] [ 9.55286656e+04] [ 8.21351233e+04] [ 7.49405450e+04] [ 5.32157390e+04] [ 3.35058778e+04] [ 1.66136440e+04] [-1.39818122e+04] [ 2.14885095e+04] [ 5.52127456e+03] [ 8.16206384e+04] [ 3.79281385e+04] [ 1.09335304e+04] [ 2.34982408e+04] [-1.17828688e+04] [ 3.98538772e+04] [ 4.42215829e+04] [ 6.27808750e+04] [ 1.50281434e+03] [ 5.47538677e+04] [ 4.09626275e+04] [ 5.79964638e+04] [ 2.15737773e+04] [ 3.73251402e+04] [ 1.00436068e+05] [ 9.55298275e+04] [-6.01901332e+03] [-1.81190118e+04] [ 1.89912585e+04] [ 2.18783873e+04] [ 3.23953698e+04] [ 6.48850564e+04] [ 6.76483307e+04] [ 3.28916102e+04] [ 2.56118154e+04] [ 6.94500220e+03] [ 9.16650596e+04] [ 4.22596892e+04] [ 3.45678228e+04] [ 7.74875097e+04] [ 5.02744211e+04] [ 6.18923966e+04] [ 1.20091628e+05] [ 5.33609688e+04] [-1.42105218e+04] [ 3.37136699e+04] [ 2.68020500e+04] [-9.57488945e+03] [ 3.75269757e+04] [ 2.69785796e+04] [-1.02671788e+03] [ 4.02983297e+04] [ 3.92837698e+04] [ 5.43089837e+04] [ 6.25751477e+03] [ 4.44839525e+04] [ 2.56231695e+04] [ 4.65805047e+04] [-7.53446900e+02] [ 4.59814301e+03] [ 7.17227007e+04] [ 4.98409271e+04] [ 1.39219345e+04] [ 6.12628755e+04] [ 3.67973692e+04] [ 2.48314325e+04] [ 2.19641304e+04] [ 4.85477660e+04] [ 3.74685962e+04] [ 1.46107897e+04] [ 1.32977276e+04] [ 4.30436593e+04] [ 3.09683777e+04] [ 1.23090152e+04] [ 5.48703011e+04] [ 2.40886093e+04] [ 4.96906762e+04] [ 7.45968093e+04] [ 1.25781616e+04] [ 8.62434536e+04] [ 3.23735853e+04] [ 8.25441151e+04] [ 3.34542991e+04] [ 2.17662054e+04] [ 6.79525419e+04] [ 7.67910195e+03] [ 2.05659498e+04] [ 1.45568094e+04] [ 7.32280041e+04] [ 2.74655993e+04] [-2.78234822e+03] [ 9.55293918e+04] [ 2.70399512e+03] [ 2.01194307e+04] [-1.26097057e+04] [ 2.41052835e+04] [ 1.88758039e+04] [ 1.70969595e+04] [ 6.87331454e+04] [ 1.54055323e+04] [ 1.81482242e+04] [ 1.49857523e+05] [ 1.91716243e+04] [ 2.44616990e+04] [ 1.20994614e+05] [ 6.22825860e+04] [ 1.32896850e+04] [ 1.48926177e+04] [ 7.49401093e+04] [ 2.98847085e+04] [ 7.83718016e+04] [ 7.63975954e+03] [ 3.39814987e+04] [ 5.64987000e+04] [ 2.73889631e+04] [ 7.29763962e+04] [ 3.84496848e+04] [-6.36290177e+02] [ 2.73829692e+04] [ 3.77668236e+04] [ 4.35553958e+04] [ 3.00975414e+04] [ 2.84308776e+04] [ 5.38059327e+04] [ 2.34657860e+04] [ 1.14752909e+04] [ 3.29090825e+03] [ 3.68497030e+04] [ 1.40531278e+04] [ 3.52155681e+04] [ 5.89700199e+03] [ 5.24862337e+04] [ 3.92933948e+04] [ 8.59376845e+03] [ 4.92554503e+03] [-2.32014656e+04] [ 2.44390308e+04] [-2.12286176e+04] [ 6.80774508e+04] [ 8.87696844e+04] [ 2.47949144e+03] [ 2.65942205e+04] [ 4.74497286e+04] [ 2.60220384e+04] [ 4.58110680e+04] [ 4.88588451e+04] [ 2.37969368e+04] [ 2.15490883e+04] [ 5.77794692e+04] [ 7.63565582e+04] [ 1.73454390e+04] [ 4.46006665e+04] [ 6.03239564e+04] [ 3.04161206e+04] [ 2.88105503e+04] [ 6.45221803e+04] [ 3.93983198e+03] [ 3.52486354e+04] [-2.00595799e+03] [ 4.25393763e+04] [ 4.17506277e+04] [ 3.00921486e+04] [ 5.29598062e+04] [ 6.35070240e+04] [ 1.30497869e+05] [ 8.72599621e+04] [ 4.49456832e+04] [ 6.62783780e+04] [ 1.30458250e+04] [ 6.51087000e+04] [ 1.47700561e+04] [ 3.97172087e+03] [ 5.45698206e+04] [ 3.92757272e+04] [ 5.86862154e+04] [ 1.46647577e+04] [ 4.85958666e+04] [ 3.27656923e+04] [ 5.16166193e+04] [ 6.37901595e+04] [ 8.27669537e+03] [ 4.44470403e+03] [ 5.48899029e+04] [ 2.12692812e+04] [ 9.44542556e+04] [ 4.17926078e+04] [-9.12329402e+02] [ 4.87988831e+04] [ 5.82550345e+04] [ 7.83716564e+04] [ 1.79254278e+05] [ 6.80775960e+04] [ 5.46045563e+04] [ 8.51910622e+03] [ 3.08604417e+04] [ 3.12439259e+04] [-2.40882505e+04] [ 7.05766223e+04] [ 8.18032034e+04] [ 4.21722806e+04] [ 2.83109876e+04] [ 4.74276265e+04] [ 7.67639692e+04] [ 3.71113168e+04] [-1.32297547e+04] [ 3.85111404e+04] [ 3.67009333e+04] [ 5.11705339e+04] [-3.82518515e+03] [ 2.77726540e+04] [ 1.88429707e+04] [-1.49374038e+04] [ 2.64349542e+04] [-1.66357904e+03] [ 5.01625419e+04] [ 7.14267877e+04] [ 4.83545621e+04] [ 2.37668499e+04] [ 7.40267890e+03] [ 6.59193248e+04] [ 2.13228654e+04] [ 7.04900421e+04] [ 4.47360866e+04] [ 3.47583889e+04] [ 5.18087774e+04] [ 3.68748252e+04] [ 8.76196156e+04] [ 6.09000252e+04] [ 5.37751549e+04] [ 2.64138959e+04] [-6.04990349e+02] [ 1.94719666e+04] [ 8.00517596e+04] [ 8.14486150e+04] [ 4.52312476e+04] [ 6.54858499e+03] [ 1.93094735e+04] [ 2.38485465e+05] [ 9.89609389e+04] [ 1.20329797e+05] [ 1.12266687e+05] [ 1.06043174e+04] [ 4.44880574e+04] [ 4.67570344e+04] [ 4.31948831e+04] [ 6.58194314e+04] [ 6.76323430e+04] [ 7.83710754e+04] [ 5.87025823e+04] [ 4.86412816e+04] [ 5.13357942e+04] [-2.55895708e+04] [ 5.52489561e+04] [ 4.30457080e+04] [ 3.98529801e+04] [ 7.44798402e+04] [ 5.58178664e+04] [ 2.83682779e+04] [ 4.32556374e+03] [ 7.49401093e+04] [ 2.03092220e+04] [ 4.24847819e+04] [ 2.75741244e+04] [ 6.61066642e+04] [ 3.19111792e+04] [ 5.76034631e+04] [ 2.34045699e+04] [ 6.80770151e+04] [ 6.12145019e+04] [ 1.12895812e+05] [ 4.40665677e+04] [ 9.59321744e+04] [ 6.53237825e+04] [ 6.60966158e+04] [ 6.16700812e+04] [ 2.92109674e+04] [ 7.02154658e+03] [ 1.79197752e+04] [ 2.50673350e+04] [ 4.72636015e+04] [ 9.23610370e+03] [ 6.51091237e+04] [ 5.06992027e+04] [ 3.08554420e+04] [ 7.80239759e+04] [ 1.36781688e+04] [ 2.51278860e+04] [ 2.45923032e+04] [ 8.67040464e+03] [ 3.98119192e+04] [ 1.35470374e+04] [ 8.18032034e+04] [ 4.20587052e+04] [ 3.95035872e+04] [ 2.75801183e+04] [ 1.76679845e+04] [ 7.99267520e+04] [ 6.98405293e+04] [ 2.34331025e+04] [ 5.22103653e+04] [ 2.85215129e+04] [ 1.93674407e+04] [ 1.49962178e+04] [ 5.82847453e+04] [-2.38509784e+04] [ 4.52841169e+04] [ 2.31038551e+04] [ 2.01960669e+04] [ 1.78780640e+04] [ 2.49140626e+04] [ 5.22276943e+04] [ 4.72633660e+04] [ 3.27478400e+04] [ 2.58243217e+04] [ 4.42135403e+04] [ 4.79002889e+04] [ 7.83716564e+04] [ 2.40941980e+04] [ 1.90258207e+04] [ 3.69520505e+04] [ 6.36189659e+04] [ 4.14228743e+04] [ 7.66286754e+04] [ 2.93001912e+02] [ 6.41098944e+04] [ 2.61873769e+04] [ 3.42067209e+04] [ 2.49200566e+04] [ 6.06011246e+04] [ 5.92036537e+04] [ 6.64316504e+04] [ 7.91520970e+03] [ 8.93294867e+04] [ 3.22776596e+04] [-3.05700209e+04] [ 1.06293618e+05] [ 7.26140278e+04] [ 2.04653179e+04] [ 1.96907665e+05] [ 4.98539697e+04] [ 1.83720059e+04] [ 4.73004447e+04] [ 3.58295545e+04] [-2.85150061e+04] [ 2.35837372e+04] [ 5.02479170e+04] [ 1.05426261e+05] [ 1.60085306e+04] [ 2.57377687e+04] [ 9.40069725e+04] [-1.23465247e+04] [ 9.33117395e+04] [ 7.11769593e+04] [ 6.86786909e+04] [ 5.86844219e+04] [ 2.78019843e+04] [ 9.48765839e+04] [ 1.28080702e+04] [ 7.91108006e+04] [ 1.19733962e+04] [ 7.38588734e+04] [ 6.40128498e+03] [ 6.52553159e+04] [ 4.17775391e+04] [ 7.47860903e+04] [ 6.84652518e+04] [ 2.73123269e+04] [-1.65561112e+03] [ 1.29133685e+04] [ 5.98767472e+03] [ 4.61408243e+04] [ 1.96114873e+04] [ 6.70697999e+04] [ 7.49401093e+04] [ 5.22677240e+04] [ 5.66326605e+04] [ 1.29819621e+04] [ 2.81924020e+04] [ 1.64104017e+04] [ 2.93185506e+03] [ 1.85786207e+04] [-1.34830572e+04] [ 2.24563755e+03] [ 5.43229835e+04] [ 1.36788086e+05] [ 8.40736383e+04] [ 1.46914537e+03] [ 4.05282383e+04] [ 4.12403508e+04] [-2.75501503e+04] [ 5.54335283e+04] [ 2.17228781e+04] [-5.71333908e+03] [ 1.69133186e+03] [ 7.38187266e+04] [ 3.61783340e+04] [ 9.24524667e+04] [ 6.58295354e+04] [ 8.19438840e+04] [ 5.58232923e+04] [ 4.93964766e+04] [ 9.08771880e+04] [ 3.02788588e+04] [ 6.33019617e+04] [-5.03969853e+03] [ 5.56652904e+04] [-2.16618511e+04] [ 5.82403041e+04] [ 7.26419803e+04] [ 1.42516992e+04] [ 6.87006433e+03] [ 3.63505118e+04] [ 6.31680013e+04] [ 2.21299799e+04] [-6.59547416e+02] [ 2.46069288e+04] [ 7.47691128e+04] [ 1.44882281e+04] [ 4.59137287e+04] [ 6.32079327e+04] [ 6.78693880e+04] [ 1.28197836e+05] [ 5.14657587e+04] [ 2.82655674e+03] [ 2.73143756e+04] [ 7.02539343e+04] [ 4.41058855e+04] [ 6.30195447e+04] [ 1.41057313e+04] [ 3.47756149e+04] [ 1.26588798e+04] [-4.90514987e+04] [ 2.50685131e+04] [ 5.58952421e+04] [ 4.63293876e+04] [ 1.59109320e+04] [-2.06855765e+03] [ 5.64793881e+04] [ 4.23821320e+04] [ 4.14498311e+04] [ 2.65861779e+04] [ 2.20780603e+04] [ 5.41557113e+04] [ 4.25185577e+04] [ 2.01668948e+05] [ 1.43182815e+04] [-2.00103554e+04] [ 5.64148158e+04] [ 3.80370409e+04] [ 1.79511196e+04] [ 3.93804365e+04] [ 4.83253109e+04] [ 1.10400068e+04] [ 6.93919470e+04] [-2.85203089e+03] [ 1.32499937e+05] [ 9.00454527e+04] [-1.00602366e+03] [ 2.65320678e+04] [-2.50424704e+03] [ 3.02109289e+04] [-1.06622818e+03] [ 6.76334202e+04] [ 2.59685741e+04] [ 3.97799524e+04] [-6.07239227e+03] [ 2.06478415e+04] [ 2.32711985e+04] [ 3.40614911e+04] [ 2.14548517e+04] [ 4.92339835e+04] [ 3.28563650e+04] [ 5.80275285e+04] [ 5.51835135e+04] [ 5.69571871e+04] [ 2.18148793e+04] [ 2.68786862e+04] [ 4.25999274e+04] [ 6.18609331e+04] [ 2.39114906e+04] [ 5.54507916e+04] [ 8.99193491e+04] [ 8.74626162e+04] [ 4.00472126e+04] [ 5.09581277e+04] [ 1.25970242e+03] [ 4.50495006e+04] [ 2.49973465e+04] [ 3.35491655e+04] [ 3.96208450e+04] [ 1.67892367e+04] [ 1.37534475e+04] [ 8.73896091e+03] [ 8.83452644e+04] [ 4.97945570e+04] [ 3.22646629e+04] [ 8.06827686e+03] [ 8.69380011e+04] [ 2.53637886e+04] [ 3.46235163e+04] [ 3.07286594e+04] [ 8.04655616e+04] [ 3.06299440e+04] [ 4.48446734e+04] [-3.89468345e+04] [ 3.91445340e+04] [ 1.67633417e+04] [ 1.16092773e+05] [ 7.61620467e+04] [ 5.03561131e+04] [ 6.35579938e+04] [ 3.06012819e+04] [ 3.61394556e+04] [-9.83433043e+03] [ 1.13452332e+04] [ 1.11683571e+04] [ 7.50257233e+03] [ 5.29760206e+04] [ 4.80661512e+04] [-9.30847054e+02] [-1.47641009e+04] [ 9.41345552e+04] [ 1.69338050e+03] [ 7.01320646e+04] [-4.13359245e+03] [ 3.31387820e+04] [ 9.54335401e+04] [ 4.02156996e+04] [ 2.15797713e+04] [ 5.04443850e+04] [ 5.72135796e+04] [ 9.55293918e+04] [ 3.33463530e+04] [-1.58640419e+04] [ 1.38862815e+04] [-2.89066667e+04] [ 2.19971557e+04] [ 5.19793131e+04] [ 7.12684490e+03] [ 3.58889140e+04] [-1.23545673e+04] [ 5.99529153e+04] [ 1.29480082e+05] [ 4.59496018e+04] [ 5.85892414e+04] [-2.87792583e+03] [ 4.14995105e+04] [ 5.77815025e+04] [-3.27996125e+03] [ 1.82457376e+03] [ 5.56717526e+04] [ 1.42649973e+04] [ 2.25823433e+04] [-3.08457716e+03] [ 2.68503273e+04] [ 8.00012708e+04] [ 1.03130472e+05] [ 1.91955435e+04] [ 1.71504693e+03] [ 8.18033487e+04] [-1.21180992e+03] [ 2.79698823e+04] [ 2.41738771e+04] [ 1.30961048e+03] [ 2.65035105e+04] [ 2.28322824e+04] [ 9.09400887e+04] [ 6.26556757e+04] [-3.62015998e+03] [ 4.63953435e+04] [ 5.12807099e+04] [ 4.29831083e+04] [ 5.46680369e+04] [ 1.64534407e+04] [ 5.77744683e+04] [-3.07626357e+04] [ 4.46185189e+04] [ 7.60557519e+04] [ 7.77895805e+03] [ 6.80770151e+04] [ 4.19211634e+04] [-1.27882453e+04] [-4.27656585e+04] [ 2.99285119e+04] [ 1.25009364e+04] [ 1.27659808e+04] [ 2.35303583e+04] [ 1.08538303e+05] [ 2.61444946e+04] [ 4.61070901e+04] [ 2.90919492e+04] [ 3.26301940e+04] [-3.59837362e+04] [ 4.08836664e+04] [-2.50733677e+04] [ 3.62939061e+04] [ 3.36585334e+04] [ 3.56449823e+04] [ 5.42363688e+04] [ 8.61907433e+03] [-2.55060788e+04] [ 1.77605089e+04] [ 3.94269510e+04] [ 1.73474877e+04] [ 2.28182458e+04] [ 3.73464248e+04] [-6.07778184e+04] [ 6.06230754e+04] [ 4.95028941e+04] [ 4.30465868e+03] [ 7.13864363e+04] [ 5.93920266e+04] [ 2.62271247e+04] [ 1.32790047e+04] [ 5.79284219e+04] [ 7.41990485e+03] [-9.84098811e+03] [ 3.46916920e+04] [ 1.72638308e+05] [-1.65317359e+04] [ 1.97624262e+04] [ 7.96505300e+04] [ 6.12139209e+04] [ 1.77458833e+04] [-1.16180069e+04] [ 6.05027437e+03] [ 6.19094962e+04] [ 1.63271997e+04] [ 2.35217266e+04] [ 3.33025067e+03] [ 2.94707434e+04] [ 3.51406993e+04] [ 5.84048545e+04] [ 7.34499762e+04] [-6.43144547e+03] [ 6.03239564e+04] [ 7.48168215e+04] [ 6.51708775e+03] [ 3.86342570e+04] [ 2.80017539e+04] [ 1.27833534e+04] [ 6.84501695e+03] [ 7.97847490e+04] [ 5.77815025e+04] [ 3.57901748e+04] [ 2.97666078e+04] [ 2.67605154e+03] [ 3.66836700e+04] [ 2.33084923e+04] [ 6.76334202e+04] [ 4.61015276e+04] [-3.99751815e+03] [ 5.77794692e+04] [ 9.18723367e+04] [ 2.09273075e+04] [ 4.77050493e+04] [ 5.12018338e+04] [ 7.28669250e+04] [ 4.01106329e+03] [ 4.25453703e+04] [ 5.93779900e+04] [ 1.58331791e+04] [-9.63513262e+03] [ 4.66142288e+04] [ 1.98223881e+04] [ 3.76360987e+04] [ 6.56289229e+04] [ 3.79609394e+04] [ 4.51897108e+03] [ 3.73240020e+04] [ 3.30489038e+04] [ 6.55462351e+04] [ 2.09842265e+04] [ 2.27813359e+04] [ 3.02900389e+04] [ 3.39256920e+04] [ 2.81837057e+04] [ 5.46933428e+04] [ 6.28676111e+04] [ 5.88397695e+04] [ 1.11565745e+04] [ 4.93879095e+04] [ 2.13959748e+04] [-2.54840529e+03] [ 2.04745386e+04] [ 1.34036150e+04] [-1.09562003e+04] [ 4.16027602e+04] [ 2.22832521e+04] [-1.50826336e+04] [ 2.20645758e+04] [ 2.07850287e+04] [ 2.93395501e+04] [ 1.49221568e+04] [ 6.99675986e+04] [ 4.87076214e+04] [ 3.57962061e+04] [ 3.55077951e+04] [ 7.08091948e+03] [ 9.55299727e+04] [ 4.47551170e+04] [ 1.28153172e+05] [ 6.11953351e+04] [ 7.55876171e+04] [ 3.34427164e+04] [ 2.62837305e+04] [ 5.99649032e+04] [ 1.80190796e+04] [ 4.01530999e+04] [ 8.00956463e+04] [ 4.53701032e+04] [ 5.05890257e+04] [ 9.69598772e+04] [ 1.06663280e+04] [ 3.06675785e+03] [ 2.55036135e+04] [ 5.62841964e+02] [ 2.59426591e+04] [ 3.71113168e+04] [-5.31103841e+04] [ 3.83280753e+04] [-1.67995706e+04] [ 5.90616355e+04] [ 8.18032034e+04] [ 4.92945345e+04] [ 2.68678377e+04] [ 7.83716564e+04] [-2.10308322e+03] [ 2.59623695e+04] [ 3.88953555e+04] [-1.52824204e+04] [ 1.56137759e+04] [ 4.57207020e+04] [ 9.49859035e+04] [ 6.01354389e+04] [ 1.15377416e+05] [ 9.26166504e+04] [ 6.01807752e+04] [ 2.00325322e+04] [-1.54956548e+04] [ 2.66551677e+04] [ 1.57952963e+04] [ 2.55009758e+04] [ 2.97045972e+04] [ 8.85042495e+04] [ 7.83716564e+04] [ 3.92959969e+02] [ 2.99391341e+04] [ 7.11929338e+04] [ 7.79254238e+04] [ 9.55299727e+04] [ 3.54251650e+04] [ 1.46659560e+04] [ 1.46707517e+04] [ 5.91641666e+04] [ 4.16628186e+04] [ 2.96565004e+04] [ 5.59482104e+04] [ 1.29428394e+04] [ 3.90105735e+04] [ 6.54708788e+04] [ 8.06836105e+04] [ 6.10708704e+04] [ 5.43846992e+04] [-6.98106482e+03] [-1.25945989e+04] [ 2.75201564e+04] [ 8.61682697e+04] [ 3.96568595e+04] [ 7.22317435e+04] [ 6.42532034e+04] [-1.33436918e+04] [ 7.42884259e+03] [ 8.86030759e+04] [ 2.87273311e+04] [ 3.63851679e+04] [ 1.17521020e+04] [-5.96818037e+03] [ 3.24832753e+04] [ 6.34601148e+04] [ 6.89318567e+04] [ 2.11220070e+04] [ 2.04199816e+04] [ 1.98807680e+04] [ 3.52155616e+03] [ 6.10402847e+04] [ 4.02624678e+04] [ 8.23222491e+04] [ 6.70045270e+04] [ 2.14444622e+04] [ 2.12126755e+04] [ 7.21347927e+04] [ 7.49057938e+04] [ 5.06850048e+03] [ 5.46107127e+04] [ 7.41207870e+04] [ 4.69191904e+04] [ 3.96488170e+04] [ 4.80348938e+04] [ 3.63791739e+04] [ 8.98588017e+01] [ 7.49405450e+04] [ 2.50679241e+04] [ 1.06129491e+04] [ 4.48075447e+04] [ 7.79221970e+04] [ 7.57540804e+04] [ 2.69957734e+03] [ 1.12705044e+04] [ 1.40757960e+04] [ 6.72862389e+04] [ 7.59470449e+04] [ 6.85960608e+04] [ 3.92444274e+04] [ 3.36973605e+04] [ 5.97828943e+03] [ 4.53820003e+04] [ 4.52929960e+04] [-2.87656795e+04] [ 1.73480968e+04] [ 7.18208059e+04] [ 7.41785116e+04] [ 4.15227678e+04] [ 1.18171637e+05]]
predict.tofile('dev-0/out.tsv', sep='\n')
error = np.sqrt(mean_squared_error(y_dev, predict))
print(error)
34136.77274287094
#test
pd.DataFrame(predict).to_csv('dev-0/out.tsv', sep='\t', index=False, header=False)
test=pd.read_csv('test-A/in.tsv', sep='\t', names=header)
print(test)
price year brand engineType engineCapacity 0 203000 2010 Renault diesel 1500 1 39000 2008 Citroen benzyna 1000 2 190000 2005 Peugeot diesel 1600 3 230000 2001 Volkswagen benzyna 1598 4 189000 2000 BMW benzyna 1600 .. ... ... ... ... ... 995 465000 2005 Renault diesel 2500 996 89074 2014 BMW diesel 2000 997 21711 2014 Toyota benzyna 1329 998 144000 2014 Renault diesel 1500 999 113606 2000 Jaguar benzyna 4000 [1000 rows x 5 columns]
test.drop('brand', inplace=True, axis=1)
test.drop('engineType', inplace=True, axis=1)
y_expected = pd.DataFrame(test['price'])
y_expected.to_csv('test-A/expected.tsv', sep='\t', encoding='utf-8')
[1;31m---------------------------------------------------------------------------[0m [1;31mKeyError[0m Traceback (most recent call last) [1;32m<ipython-input-185-49d8d19457cd>[0m in [0;36m<module>[1;34m[0m [1;32m----> 1[1;33m [0mtest[0m[1;33m.[0m[0mdrop[0m[1;33m([0m[1;34m'brand'[0m[1;33m,[0m [0minplace[0m[1;33m=[0m[1;32mTrue[0m[1;33m,[0m [0maxis[0m[1;33m=[0m[1;36m1[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0m[0;32m 2[0m [0mtest[0m[1;33m.[0m[0mdrop[0m[1;33m([0m[1;34m'engineType'[0m[1;33m,[0m [0minplace[0m[1;33m=[0m[1;32mTrue[0m[1;33m,[0m [0maxis[0m[1;33m=[0m[1;36m1[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0;32m 3[0m [0my_expected[0m [1;33m=[0m [0mpd[0m[1;33m.[0m[0mDataFrame[0m[1;33m([0m[0mtest[0m[1;33m[[0m[1;34m'price'[0m[1;33m][0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0;32m 4[0m [1;33m[0m[0m [0;32m 5[0m [0my_expected[0m[1;33m.[0m[0mto_csv[0m[1;33m([0m[1;34m'test-A/expected.tsv'[0m[1;33m,[0m [0msep[0m[1;33m=[0m[1;34m'\t'[0m[1;33m,[0m [0mencoding[0m[1;33m=[0m[1;34m'utf-8'[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [1;32mc:\users\mkoci\appdata\local\programs\python\python39\lib\site-packages\pandas\core\frame.py[0m in [0;36mdrop[1;34m(self, labels, axis, index, columns, level, inplace, errors)[0m [0;32m 4303[0m [0mweight[0m [1;36m1.0[0m [1;36m0.8[0m[1;33m[0m[1;33m[0m[0m [0;32m 4304[0m """ [1;32m-> 4305[1;33m return super().drop( [0m[0;32m 4306[0m [0mlabels[0m[1;33m=[0m[0mlabels[0m[1;33m,[0m[1;33m[0m[1;33m[0m[0m [0;32m 4307[0m [0maxis[0m[1;33m=[0m[0maxis[0m[1;33m,[0m[1;33m[0m[1;33m[0m[0m [1;32mc:\users\mkoci\appdata\local\programs\python\python39\lib\site-packages\pandas\core\generic.py[0m in [0;36mdrop[1;34m(self, labels, axis, index, columns, level, inplace, errors)[0m [0;32m 4148[0m [1;32mfor[0m [0maxis[0m[1;33m,[0m [0mlabels[0m [1;32min[0m [0maxes[0m[1;33m.[0m[0mitems[0m[1;33m([0m[1;33m)[0m[1;33m:[0m[1;33m[0m[1;33m[0m[0m [0;32m 4149[0m [1;32mif[0m [0mlabels[0m [1;32mis[0m [1;32mnot[0m [1;32mNone[0m[1;33m:[0m[1;33m[0m[1;33m[0m[0m [1;32m-> 4150[1;33m [0mobj[0m [1;33m=[0m [0mobj[0m[1;33m.[0m[0m_drop_axis[0m[1;33m([0m[0mlabels[0m[1;33m,[0m [0maxis[0m[1;33m,[0m [0mlevel[0m[1;33m=[0m[0mlevel[0m[1;33m,[0m [0merrors[0m[1;33m=[0m[0merrors[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0m[0;32m 4151[0m [1;33m[0m[0m [0;32m 4152[0m [1;32mif[0m [0minplace[0m[1;33m:[0m[1;33m[0m[1;33m[0m[0m [1;32mc:\users\mkoci\appdata\local\programs\python\python39\lib\site-packages\pandas\core\generic.py[0m in [0;36m_drop_axis[1;34m(self, labels, axis, level, errors)[0m [0;32m 4183[0m [0mnew_axis[0m [1;33m=[0m [0maxis[0m[1;33m.[0m[0mdrop[0m[1;33m([0m[0mlabels[0m[1;33m,[0m [0mlevel[0m[1;33m=[0m[0mlevel[0m[1;33m,[0m [0merrors[0m[1;33m=[0m[0merrors[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0;32m 4184[0m [1;32melse[0m[1;33m:[0m[1;33m[0m[1;33m[0m[0m [1;32m-> 4185[1;33m [0mnew_axis[0m [1;33m=[0m [0maxis[0m[1;33m.[0m[0mdrop[0m[1;33m([0m[0mlabels[0m[1;33m,[0m [0merrors[0m[1;33m=[0m[0merrors[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0m[0;32m 4186[0m [0mresult[0m [1;33m=[0m [0mself[0m[1;33m.[0m[0mreindex[0m[1;33m([0m[1;33m**[0m[1;33m{[0m[0maxis_name[0m[1;33m:[0m [0mnew_axis[0m[1;33m}[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0;32m 4187[0m [1;33m[0m[0m [1;32mc:\users\mkoci\appdata\local\programs\python\python39\lib\site-packages\pandas\core\indexes\base.py[0m in [0;36mdrop[1;34m(self, labels, errors)[0m [0;32m 5589[0m [1;32mif[0m [0mmask[0m[1;33m.[0m[0many[0m[1;33m([0m[1;33m)[0m[1;33m:[0m[1;33m[0m[1;33m[0m[0m [0;32m 5590[0m [1;32mif[0m [0merrors[0m [1;33m!=[0m [1;34m"ignore"[0m[1;33m:[0m[1;33m[0m[1;33m[0m[0m [1;32m-> 5591[1;33m [1;32mraise[0m [0mKeyError[0m[1;33m([0m[1;34mf"{labels[mask]} not found in axis"[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0m[0;32m 5592[0m [0mindexer[0m [1;33m=[0m [0mindexer[0m[1;33m[[0m[1;33m~[0m[0mmask[0m[1;33m][0m[1;33m[0m[1;33m[0m[0m [0;32m 5593[0m [1;32mreturn[0m [0mself[0m[1;33m.[0m[0mdelete[0m[1;33m([0m[0mindexer[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [1;31mKeyError[0m: "['brand'] not found in axis"
print(test)
year engineCapacity 0 2010 1500 1 2008 1000 2 2005 1600 3 2001 1598 4 2000 1600 .. ... ... 995 2005 2500 996 2014 2000 997 2014 1329 998 2014 1500 999 2000 4000 [1000 rows x 2 columns]
x_test = pd.DataFrame(test)
predict = model.predict(x_test)
pd.DataFrame(predict).to_csv('test-A/out.tsv', sep='\t', index=False, header=False)
[1;31m---------------------------------------------------------------------------[0m [1;31mValueError[0m Traceback (most recent call last) [1;32m<ipython-input-187-2e8bc4bccb95>[0m in [0;36m<module>[1;34m[0m [0;32m 1[0m [0mx_test[0m [1;33m=[0m [0mpd[0m[1;33m.[0m[0mDataFrame[0m[1;33m([0m[0mtest[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0;32m 2[0m [1;33m[0m[0m [1;32m----> 3[1;33m [0mpredict[0m [1;33m=[0m [0mmodel[0m[1;33m.[0m[0mpredict[0m[1;33m([0m[0mx_test[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0m[0;32m 4[0m [0mpd[0m[1;33m.[0m[0mDataFrame[0m[1;33m([0m[0mpredict[0m[1;33m)[0m[1;33m.[0m[0mto_csv[0m[1;33m([0m[1;34m'test-A/out.tsv'[0m[1;33m,[0m [0msep[0m[1;33m=[0m[1;34m'\t'[0m[1;33m,[0m [0mindex[0m[1;33m=[0m[1;32mFalse[0m[1;33m,[0m [0mheader[0m[1;33m=[0m[1;32mFalse[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [1;32mc:\users\mkoci\appdata\local\programs\python\python39\lib\site-packages\sklearn\linear_model\_base.py[0m in [0;36mpredict[1;34m(self, X)[0m [0;32m 236[0m [0mReturns[0m [0mpredicted[0m [0mvalues[0m[1;33m.[0m[1;33m[0m[1;33m[0m[0m [0;32m 237[0m """ [1;32m--> 238[1;33m [1;32mreturn[0m [0mself[0m[1;33m.[0m[0m_decision_function[0m[1;33m([0m[0mX[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0m[0;32m 239[0m [1;33m[0m[0m [0;32m 240[0m [0m_preprocess_data[0m [1;33m=[0m [0mstaticmethod[0m[1;33m([0m[0m_preprocess_data[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [1;32mc:\users\mkoci\appdata\local\programs\python\python39\lib\site-packages\sklearn\linear_model\_base.py[0m in [0;36m_decision_function[1;34m(self, X)[0m [0;32m 219[0m [1;33m[0m[0m [0;32m 220[0m [0mX[0m [1;33m=[0m [0mcheck_array[0m[1;33m([0m[0mX[0m[1;33m,[0m [0maccept_sparse[0m[1;33m=[0m[1;33m[[0m[1;34m'csr'[0m[1;33m,[0m [1;34m'csc'[0m[1;33m,[0m [1;34m'coo'[0m[1;33m][0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [1;32m--> 221[1;33m return safe_sparse_dot(X, self.coef_.T, [0m[0;32m 222[0m dense_output=True) + self.intercept_ [0;32m 223[0m [1;33m[0m[0m [1;32mc:\users\mkoci\appdata\local\programs\python\python39\lib\site-packages\sklearn\utils\validation.py[0m in [0;36minner_f[1;34m(*args, **kwargs)[0m [0;32m 61[0m [0mextra_args[0m [1;33m=[0m [0mlen[0m[1;33m([0m[0margs[0m[1;33m)[0m [1;33m-[0m [0mlen[0m[1;33m([0m[0mall_args[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0;32m 62[0m [1;32mif[0m [0mextra_args[0m [1;33m<=[0m [1;36m0[0m[1;33m:[0m[1;33m[0m[1;33m[0m[0m [1;32m---> 63[1;33m [1;32mreturn[0m [0mf[0m[1;33m([0m[1;33m*[0m[0margs[0m[1;33m,[0m [1;33m**[0m[0mkwargs[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0m[0;32m 64[0m [1;33m[0m[0m [0;32m 65[0m [1;31m# extra_args > 0[0m[1;33m[0m[1;33m[0m[1;33m[0m[0m [1;32mc:\users\mkoci\appdata\local\programs\python\python39\lib\site-packages\sklearn\utils\extmath.py[0m in [0;36msafe_sparse_dot[1;34m(a, b, dense_output)[0m [0;32m 150[0m [0mret[0m [1;33m=[0m [0mnp[0m[1;33m.[0m[0mdot[0m[1;33m([0m[0ma[0m[1;33m,[0m [0mb[0m[1;33m)[0m[1;33m[0m[1;33m[0m[0m [0;32m 151[0m [1;32melse[0m[1;33m:[0m[1;33m[0m[1;33m[0m[0m [1;32m--> 152[1;33m [0mret[0m [1;33m=[0m [0ma[0m [1;33m@[0m [0mb[0m[1;33m[0m[1;33m[0m[0m [0m[0;32m 153[0m [1;33m[0m[0m [0;32m 154[0m if (sparse.issparse(a) and sparse.issparse(b) [1;31mValueError[0m: matmul: Input operand 1 has a mismatch in its core dimension 0, with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 3 is different from 2)
predict.tofile('test-A/out.tsv', sep='\n')