LSR/env/lib/python3.6/site-packages/pandas/tests/indexes/datetimelike.py

98 lines
2.9 KiB
Python
Raw Normal View History

2020-06-04 17:24:47 +02:00
""" generic datetimelike tests """
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from .common import Base
class DatetimeLike(Base):
def test_argmax_axis_invalid(self):
# GH#23081
rng = self.create_index()
with pytest.raises(ValueError):
rng.argmax(axis=1)
with pytest.raises(ValueError):
rng.argmin(axis=2)
with pytest.raises(ValueError):
rng.min(axis=-2)
with pytest.raises(ValueError):
rng.max(axis=-3)
def test_can_hold_identifiers(self):
idx = self.create_index()
key = idx[0]
assert idx._can_hold_identifiers_and_holds_name(key) is False
def test_shift_identity(self):
idx = self.create_index()
tm.assert_index_equal(idx, idx.shift(0))
def test_str(self):
# test the string repr
idx = self.create_index()
idx.name = "foo"
assert not "length={}".format(len(idx)) in str(idx)
assert "'foo'" in str(idx)
assert type(idx).__name__ in str(idx)
if hasattr(idx, "tz"):
if idx.tz is not None:
assert idx.tz in str(idx)
if hasattr(idx, "freq"):
assert "freq='{idx.freqstr}'".format(idx=idx) in str(idx)
def test_view(self):
i = self.create_index()
i_view = i.view("i8")
result = self._holder(i)
tm.assert_index_equal(result, i)
i_view = i.view(self._holder)
result = self._holder(i)
tm.assert_index_equal(result, i_view)
def test_map_callable(self):
index = self.create_index()
expected = index + index.freq
result = index.map(lambda x: x + x.freq)
tm.assert_index_equal(result, expected)
# map to NaT
result = index.map(lambda x: pd.NaT if x == index[0] else x)
expected = pd.Index([pd.NaT] + index[1:].tolist())
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"mapper",
[
lambda values, index: {i: e for e, i in zip(values, index)},
lambda values, index: pd.Series(values, index, dtype=object),
],
)
def test_map_dictlike(self, mapper):
index = self.create_index()
expected = index + index.freq
# don't compare the freqs
if isinstance(expected, pd.DatetimeIndex):
expected._data.freq = None
result = index.map(mapper(expected, index))
tm.assert_index_equal(result, expected)
expected = pd.Index([pd.NaT] + index[1:].tolist())
result = index.map(mapper(expected, index))
tm.assert_index_equal(result, expected)
# empty map; these map to np.nan because we cannot know
# to re-infer things
expected = pd.Index([np.nan] * len(index))
result = index.map(mapper([], []))
tm.assert_index_equal(result, expected)