98 lines
2.9 KiB
Python
98 lines
2.9 KiB
Python
""" generic datetimelike tests """
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
|
|
from .common import Base
|
|
|
|
|
|
class DatetimeLike(Base):
|
|
def test_argmax_axis_invalid(self):
|
|
# GH#23081
|
|
rng = self.create_index()
|
|
with pytest.raises(ValueError):
|
|
rng.argmax(axis=1)
|
|
with pytest.raises(ValueError):
|
|
rng.argmin(axis=2)
|
|
with pytest.raises(ValueError):
|
|
rng.min(axis=-2)
|
|
with pytest.raises(ValueError):
|
|
rng.max(axis=-3)
|
|
|
|
def test_can_hold_identifiers(self):
|
|
idx = self.create_index()
|
|
key = idx[0]
|
|
assert idx._can_hold_identifiers_and_holds_name(key) is False
|
|
|
|
def test_shift_identity(self):
|
|
|
|
idx = self.create_index()
|
|
tm.assert_index_equal(idx, idx.shift(0))
|
|
|
|
def test_str(self):
|
|
|
|
# test the string repr
|
|
idx = self.create_index()
|
|
idx.name = "foo"
|
|
assert not "length={}".format(len(idx)) in str(idx)
|
|
assert "'foo'" in str(idx)
|
|
assert type(idx).__name__ in str(idx)
|
|
|
|
if hasattr(idx, "tz"):
|
|
if idx.tz is not None:
|
|
assert idx.tz in str(idx)
|
|
if hasattr(idx, "freq"):
|
|
assert "freq='{idx.freqstr}'".format(idx=idx) in str(idx)
|
|
|
|
def test_view(self):
|
|
i = self.create_index()
|
|
|
|
i_view = i.view("i8")
|
|
result = self._holder(i)
|
|
tm.assert_index_equal(result, i)
|
|
|
|
i_view = i.view(self._holder)
|
|
result = self._holder(i)
|
|
tm.assert_index_equal(result, i_view)
|
|
|
|
def test_map_callable(self):
|
|
index = self.create_index()
|
|
expected = index + index.freq
|
|
result = index.map(lambda x: x + x.freq)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# map to NaT
|
|
result = index.map(lambda x: pd.NaT if x == index[0] else x)
|
|
expected = pd.Index([pd.NaT] + index[1:].tolist())
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"mapper",
|
|
[
|
|
lambda values, index: {i: e for e, i in zip(values, index)},
|
|
lambda values, index: pd.Series(values, index, dtype=object),
|
|
],
|
|
)
|
|
def test_map_dictlike(self, mapper):
|
|
index = self.create_index()
|
|
expected = index + index.freq
|
|
|
|
# don't compare the freqs
|
|
if isinstance(expected, pd.DatetimeIndex):
|
|
expected._data.freq = None
|
|
|
|
result = index.map(mapper(expected, index))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
expected = pd.Index([pd.NaT] + index[1:].tolist())
|
|
result = index.map(mapper(expected, index))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# empty map; these map to np.nan because we cannot know
|
|
# to re-infer things
|
|
expected = pd.Index([np.nan] * len(index))
|
|
result = index.map(mapper([], []))
|
|
tm.assert_index_equal(result, expected)
|