539 lines
16 KiB
Python
539 lines
16 KiB
Python
|
from datetime import timedelta
|
||
|
import re
|
||
|
from typing import Dict, Optional
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
from pytz import AmbiguousTimeError
|
||
|
|
||
|
from pandas._libs.algos import unique_deltas
|
||
|
from pandas._libs.tslibs import Timedelta, Timestamp
|
||
|
from pandas._libs.tslibs.ccalendar import MONTH_ALIASES, int_to_weekday
|
||
|
from pandas._libs.tslibs.fields import build_field_sarray
|
||
|
import pandas._libs.tslibs.frequencies as libfreqs
|
||
|
from pandas._libs.tslibs.offsets import _offset_to_period_map
|
||
|
import pandas._libs.tslibs.resolution as libresolution
|
||
|
from pandas._libs.tslibs.resolution import Resolution
|
||
|
from pandas._libs.tslibs.timezones import UTC
|
||
|
from pandas._libs.tslibs.tzconversion import tz_convert
|
||
|
from pandas.util._decorators import cache_readonly
|
||
|
|
||
|
from pandas.core.dtypes.common import (
|
||
|
is_datetime64_dtype,
|
||
|
is_period_arraylike,
|
||
|
is_timedelta64_dtype,
|
||
|
)
|
||
|
from pandas.core.dtypes.generic import ABCSeries
|
||
|
|
||
|
from pandas.core.algorithms import unique
|
||
|
|
||
|
from pandas.tseries.offsets import (
|
||
|
DateOffset,
|
||
|
Day,
|
||
|
Hour,
|
||
|
Micro,
|
||
|
Milli,
|
||
|
Minute,
|
||
|
Nano,
|
||
|
Second,
|
||
|
prefix_mapping,
|
||
|
)
|
||
|
|
||
|
_ONE_MICRO = 1000
|
||
|
_ONE_MILLI = _ONE_MICRO * 1000
|
||
|
_ONE_SECOND = _ONE_MILLI * 1000
|
||
|
_ONE_MINUTE = 60 * _ONE_SECOND
|
||
|
_ONE_HOUR = 60 * _ONE_MINUTE
|
||
|
_ONE_DAY = 24 * _ONE_HOUR
|
||
|
|
||
|
# ---------------------------------------------------------------------
|
||
|
# Offset names ("time rules") and related functions
|
||
|
|
||
|
#: cache of previously seen offsets
|
||
|
_offset_map: Dict[str, DateOffset] = {}
|
||
|
|
||
|
|
||
|
def get_period_alias(offset_str: str) -> Optional[str]:
|
||
|
"""
|
||
|
Alias to closest period strings BQ->Q etc.
|
||
|
"""
|
||
|
return _offset_to_period_map.get(offset_str, None)
|
||
|
|
||
|
|
||
|
_name_to_offset_map = {
|
||
|
"days": Day(1),
|
||
|
"hours": Hour(1),
|
||
|
"minutes": Minute(1),
|
||
|
"seconds": Second(1),
|
||
|
"milliseconds": Milli(1),
|
||
|
"microseconds": Micro(1),
|
||
|
"nanoseconds": Nano(1),
|
||
|
}
|
||
|
|
||
|
|
||
|
def to_offset(freq) -> Optional[DateOffset]:
|
||
|
"""
|
||
|
Return DateOffset object from string or tuple representation
|
||
|
or datetime.timedelta object.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
freq : str, tuple, datetime.timedelta, DateOffset or None
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DateOffset
|
||
|
None if freq is None.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If freq is an invalid frequency
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DateOffset
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> to_offset('5min')
|
||
|
<5 * Minutes>
|
||
|
|
||
|
>>> to_offset('1D1H')
|
||
|
<25 * Hours>
|
||
|
|
||
|
>>> to_offset(('W', 2))
|
||
|
<2 * Weeks: weekday=6>
|
||
|
|
||
|
>>> to_offset((2, 'B'))
|
||
|
<2 * BusinessDays>
|
||
|
|
||
|
>>> to_offset(datetime.timedelta(days=1))
|
||
|
<Day>
|
||
|
|
||
|
>>> to_offset(Hour())
|
||
|
<Hour>
|
||
|
"""
|
||
|
if freq is None:
|
||
|
return None
|
||
|
|
||
|
if isinstance(freq, DateOffset):
|
||
|
return freq
|
||
|
|
||
|
if isinstance(freq, tuple):
|
||
|
name = freq[0]
|
||
|
stride = freq[1]
|
||
|
if isinstance(stride, str):
|
||
|
name, stride = stride, name
|
||
|
name, _ = libfreqs._base_and_stride(name)
|
||
|
delta = _get_offset(name) * stride
|
||
|
|
||
|
elif isinstance(freq, timedelta):
|
||
|
delta = None
|
||
|
freq = Timedelta(freq)
|
||
|
try:
|
||
|
for name in freq.components._fields:
|
||
|
offset = _name_to_offset_map[name]
|
||
|
stride = getattr(freq.components, name)
|
||
|
if stride != 0:
|
||
|
offset = stride * offset
|
||
|
if delta is None:
|
||
|
delta = offset
|
||
|
else:
|
||
|
delta = delta + offset
|
||
|
except ValueError:
|
||
|
raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq))
|
||
|
|
||
|
else:
|
||
|
delta = None
|
||
|
stride_sign = None
|
||
|
try:
|
||
|
splitted = re.split(libfreqs.opattern, freq)
|
||
|
if splitted[-1] != "" and not splitted[-1].isspace():
|
||
|
# the last element must be blank
|
||
|
raise ValueError("last element must be blank")
|
||
|
for sep, stride, name in zip(
|
||
|
splitted[0::4], splitted[1::4], splitted[2::4]
|
||
|
):
|
||
|
if sep != "" and not sep.isspace():
|
||
|
raise ValueError("separator must be spaces")
|
||
|
prefix = libfreqs._lite_rule_alias.get(name) or name
|
||
|
if stride_sign is None:
|
||
|
stride_sign = -1 if stride.startswith("-") else 1
|
||
|
if not stride:
|
||
|
stride = 1
|
||
|
if prefix in Resolution._reso_str_bump_map.keys():
|
||
|
stride, name = Resolution.get_stride_from_decimal(
|
||
|
float(stride), prefix
|
||
|
)
|
||
|
stride = int(stride)
|
||
|
offset = _get_offset(name)
|
||
|
offset = offset * int(np.fabs(stride) * stride_sign)
|
||
|
if delta is None:
|
||
|
delta = offset
|
||
|
else:
|
||
|
delta = delta + offset
|
||
|
except (ValueError, TypeError):
|
||
|
raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq))
|
||
|
|
||
|
if delta is None:
|
||
|
raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(freq))
|
||
|
|
||
|
return delta
|
||
|
|
||
|
|
||
|
def get_offset(name: str) -> DateOffset:
|
||
|
"""
|
||
|
Return DateOffset object associated with rule name.
|
||
|
|
||
|
.. deprecated:: 1.0.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
get_offset('EOM') --> BMonthEnd(1)
|
||
|
"""
|
||
|
warnings.warn(
|
||
|
"get_offset is deprecated and will be removed in a future version, "
|
||
|
"use to_offset instead",
|
||
|
FutureWarning,
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
return _get_offset(name)
|
||
|
|
||
|
|
||
|
def _get_offset(name: str) -> DateOffset:
|
||
|
"""
|
||
|
Return DateOffset object associated with rule name.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
_get_offset('EOM') --> BMonthEnd(1)
|
||
|
"""
|
||
|
if name not in libfreqs._dont_uppercase:
|
||
|
name = name.upper()
|
||
|
name = libfreqs._lite_rule_alias.get(name, name)
|
||
|
name = libfreqs._lite_rule_alias.get(name.lower(), name)
|
||
|
else:
|
||
|
name = libfreqs._lite_rule_alias.get(name, name)
|
||
|
|
||
|
if name not in _offset_map:
|
||
|
try:
|
||
|
split = name.split("-")
|
||
|
klass = prefix_mapping[split[0]]
|
||
|
# handles case where there's no suffix (and will TypeError if too
|
||
|
# many '-')
|
||
|
offset = klass._from_name(*split[1:])
|
||
|
except (ValueError, TypeError, KeyError):
|
||
|
# bad prefix or suffix
|
||
|
raise ValueError(libfreqs.INVALID_FREQ_ERR_MSG.format(name))
|
||
|
# cache
|
||
|
_offset_map[name] = offset
|
||
|
|
||
|
return _offset_map[name]
|
||
|
|
||
|
|
||
|
# ---------------------------------------------------------------------
|
||
|
# Period codes
|
||
|
|
||
|
|
||
|
def infer_freq(index, warn: bool = True) -> Optional[str]:
|
||
|
"""
|
||
|
Infer the most likely frequency given the input index. If the frequency is
|
||
|
uncertain, a warning will be printed.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
index : DatetimeIndex or TimedeltaIndex
|
||
|
If passed a Series will use the values of the series (NOT THE INDEX).
|
||
|
warn : bool, default True
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
str or None
|
||
|
None if no discernible frequency
|
||
|
TypeError if the index is not datetime-like
|
||
|
ValueError if there are less than three values.
|
||
|
"""
|
||
|
import pandas as pd
|
||
|
|
||
|
if isinstance(index, ABCSeries):
|
||
|
values = index._values
|
||
|
if not (
|
||
|
is_datetime64_dtype(values)
|
||
|
or is_timedelta64_dtype(values)
|
||
|
or values.dtype == object
|
||
|
):
|
||
|
raise TypeError(
|
||
|
"cannot infer freq from a non-convertible dtype "
|
||
|
f"on a Series of {index.dtype}"
|
||
|
)
|
||
|
index = values
|
||
|
|
||
|
inferer: _FrequencyInferer
|
||
|
if is_period_arraylike(index):
|
||
|
raise TypeError(
|
||
|
"PeriodIndex given. Check the `freq` attribute "
|
||
|
"instead of using infer_freq."
|
||
|
)
|
||
|
elif is_timedelta64_dtype(index):
|
||
|
# Allow TimedeltaIndex and TimedeltaArray
|
||
|
inferer = _TimedeltaFrequencyInferer(index, warn=warn)
|
||
|
return inferer.get_freq()
|
||
|
|
||
|
if isinstance(index, pd.Index) and not isinstance(index, pd.DatetimeIndex):
|
||
|
if isinstance(index, (pd.Int64Index, pd.Float64Index)):
|
||
|
raise TypeError(
|
||
|
f"cannot infer freq from a non-convertible index type {type(index)}"
|
||
|
)
|
||
|
index = index.values
|
||
|
|
||
|
if not isinstance(index, pd.DatetimeIndex):
|
||
|
try:
|
||
|
index = pd.DatetimeIndex(index)
|
||
|
except AmbiguousTimeError:
|
||
|
index = pd.DatetimeIndex(index.asi8)
|
||
|
|
||
|
inferer = _FrequencyInferer(index, warn=warn)
|
||
|
return inferer.get_freq()
|
||
|
|
||
|
|
||
|
class _FrequencyInferer:
|
||
|
"""
|
||
|
Not sure if I can avoid the state machine here
|
||
|
"""
|
||
|
|
||
|
def __init__(self, index, warn: bool = True):
|
||
|
self.index = index
|
||
|
self.values = index.asi8
|
||
|
|
||
|
# This moves the values, which are implicitly in UTC, to the
|
||
|
# the timezone so they are in local time
|
||
|
if hasattr(index, "tz"):
|
||
|
if index.tz is not None:
|
||
|
self.values = tz_convert(self.values, UTC, index.tz)
|
||
|
|
||
|
self.warn = warn
|
||
|
|
||
|
if len(index) < 3:
|
||
|
raise ValueError("Need at least 3 dates to infer frequency")
|
||
|
|
||
|
self.is_monotonic = (
|
||
|
self.index._is_monotonic_increasing or self.index._is_monotonic_decreasing
|
||
|
)
|
||
|
|
||
|
@cache_readonly
|
||
|
def deltas(self):
|
||
|
return unique_deltas(self.values)
|
||
|
|
||
|
@cache_readonly
|
||
|
def deltas_asi8(self):
|
||
|
return unique_deltas(self.index.asi8)
|
||
|
|
||
|
@cache_readonly
|
||
|
def is_unique(self) -> bool:
|
||
|
return len(self.deltas) == 1
|
||
|
|
||
|
@cache_readonly
|
||
|
def is_unique_asi8(self):
|
||
|
return len(self.deltas_asi8) == 1
|
||
|
|
||
|
def get_freq(self) -> Optional[str]:
|
||
|
"""
|
||
|
Find the appropriate frequency string to describe the inferred
|
||
|
frequency of self.values
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
str or None
|
||
|
"""
|
||
|
if not self.is_monotonic or not self.index._is_unique:
|
||
|
return None
|
||
|
|
||
|
delta = self.deltas[0]
|
||
|
if _is_multiple(delta, _ONE_DAY):
|
||
|
return self._infer_daily_rule()
|
||
|
|
||
|
# Business hourly, maybe. 17: one day / 65: one weekend
|
||
|
if self.hour_deltas in ([1, 17], [1, 65], [1, 17, 65]):
|
||
|
return "BH"
|
||
|
# Possibly intraday frequency. Here we use the
|
||
|
# original .asi8 values as the modified values
|
||
|
# will not work around DST transitions. See #8772
|
||
|
elif not self.is_unique_asi8:
|
||
|
return None
|
||
|
|
||
|
delta = self.deltas_asi8[0]
|
||
|
if _is_multiple(delta, _ONE_HOUR):
|
||
|
# Hours
|
||
|
return _maybe_add_count("H", delta / _ONE_HOUR)
|
||
|
elif _is_multiple(delta, _ONE_MINUTE):
|
||
|
# Minutes
|
||
|
return _maybe_add_count("T", delta / _ONE_MINUTE)
|
||
|
elif _is_multiple(delta, _ONE_SECOND):
|
||
|
# Seconds
|
||
|
return _maybe_add_count("S", delta / _ONE_SECOND)
|
||
|
elif _is_multiple(delta, _ONE_MILLI):
|
||
|
# Milliseconds
|
||
|
return _maybe_add_count("L", delta / _ONE_MILLI)
|
||
|
elif _is_multiple(delta, _ONE_MICRO):
|
||
|
# Microseconds
|
||
|
return _maybe_add_count("U", delta / _ONE_MICRO)
|
||
|
else:
|
||
|
# Nanoseconds
|
||
|
return _maybe_add_count("N", delta)
|
||
|
|
||
|
@cache_readonly
|
||
|
def day_deltas(self):
|
||
|
return [x / _ONE_DAY for x in self.deltas]
|
||
|
|
||
|
@cache_readonly
|
||
|
def hour_deltas(self):
|
||
|
return [x / _ONE_HOUR for x in self.deltas]
|
||
|
|
||
|
@cache_readonly
|
||
|
def fields(self):
|
||
|
return build_field_sarray(self.values)
|
||
|
|
||
|
@cache_readonly
|
||
|
def rep_stamp(self):
|
||
|
return Timestamp(self.values[0])
|
||
|
|
||
|
def month_position_check(self):
|
||
|
return libresolution.month_position_check(self.fields, self.index.dayofweek)
|
||
|
|
||
|
@cache_readonly
|
||
|
def mdiffs(self):
|
||
|
nmonths = self.fields["Y"] * 12 + self.fields["M"]
|
||
|
return unique_deltas(nmonths.astype("i8"))
|
||
|
|
||
|
@cache_readonly
|
||
|
def ydiffs(self):
|
||
|
return unique_deltas(self.fields["Y"].astype("i8"))
|
||
|
|
||
|
def _infer_daily_rule(self) -> Optional[str]:
|
||
|
annual_rule = self._get_annual_rule()
|
||
|
if annual_rule:
|
||
|
nyears = self.ydiffs[0]
|
||
|
month = MONTH_ALIASES[self.rep_stamp.month]
|
||
|
alias = f"{annual_rule}-{month}"
|
||
|
return _maybe_add_count(alias, nyears)
|
||
|
|
||
|
quarterly_rule = self._get_quarterly_rule()
|
||
|
if quarterly_rule:
|
||
|
nquarters = self.mdiffs[0] / 3
|
||
|
mod_dict = {0: 12, 2: 11, 1: 10}
|
||
|
month = MONTH_ALIASES[mod_dict[self.rep_stamp.month % 3]]
|
||
|
alias = f"{quarterly_rule}-{month}"
|
||
|
return _maybe_add_count(alias, nquarters)
|
||
|
|
||
|
monthly_rule = self._get_monthly_rule()
|
||
|
if monthly_rule:
|
||
|
return _maybe_add_count(monthly_rule, self.mdiffs[0])
|
||
|
|
||
|
if self.is_unique:
|
||
|
days = self.deltas[0] / _ONE_DAY
|
||
|
if days % 7 == 0:
|
||
|
# Weekly
|
||
|
day = int_to_weekday[self.rep_stamp.weekday()]
|
||
|
return _maybe_add_count(f"W-{day}", days / 7)
|
||
|
else:
|
||
|
return _maybe_add_count("D", days)
|
||
|
|
||
|
if self._is_business_daily():
|
||
|
return "B"
|
||
|
|
||
|
wom_rule = self._get_wom_rule()
|
||
|
if wom_rule:
|
||
|
return wom_rule
|
||
|
|
||
|
return None
|
||
|
|
||
|
def _get_annual_rule(self) -> Optional[str]:
|
||
|
if len(self.ydiffs) > 1:
|
||
|
return None
|
||
|
|
||
|
if len(unique(self.fields["M"])) > 1:
|
||
|
return None
|
||
|
|
||
|
pos_check = self.month_position_check()
|
||
|
return {"cs": "AS", "bs": "BAS", "ce": "A", "be": "BA"}.get(pos_check)
|
||
|
|
||
|
def _get_quarterly_rule(self) -> Optional[str]:
|
||
|
if len(self.mdiffs) > 1:
|
||
|
return None
|
||
|
|
||
|
if not self.mdiffs[0] % 3 == 0:
|
||
|
return None
|
||
|
|
||
|
pos_check = self.month_position_check()
|
||
|
return {"cs": "QS", "bs": "BQS", "ce": "Q", "be": "BQ"}.get(pos_check)
|
||
|
|
||
|
def _get_monthly_rule(self) -> Optional[str]:
|
||
|
if len(self.mdiffs) > 1:
|
||
|
return None
|
||
|
pos_check = self.month_position_check()
|
||
|
return {"cs": "MS", "bs": "BMS", "ce": "M", "be": "BM"}.get(pos_check)
|
||
|
|
||
|
def _is_business_daily(self) -> bool:
|
||
|
# quick check: cannot be business daily
|
||
|
if self.day_deltas != [1, 3]:
|
||
|
return False
|
||
|
|
||
|
# probably business daily, but need to confirm
|
||
|
first_weekday = self.index[0].weekday()
|
||
|
shifts = np.diff(self.index.asi8)
|
||
|
shifts = np.floor_divide(shifts, _ONE_DAY)
|
||
|
weekdays = np.mod(first_weekday + np.cumsum(shifts), 7)
|
||
|
return np.all(
|
||
|
((weekdays == 0) & (shifts == 3))
|
||
|
| ((weekdays > 0) & (weekdays <= 4) & (shifts == 1))
|
||
|
)
|
||
|
|
||
|
def _get_wom_rule(self) -> Optional[str]:
|
||
|
# wdiffs = unique(np.diff(self.index.week))
|
||
|
# We also need -47, -49, -48 to catch index spanning year boundary
|
||
|
# if not lib.ismember(wdiffs, set([4, 5, -47, -49, -48])).all():
|
||
|
# return None
|
||
|
|
||
|
weekdays = unique(self.index.weekday)
|
||
|
if len(weekdays) > 1:
|
||
|
return None
|
||
|
|
||
|
week_of_months = unique((self.index.day - 1) // 7)
|
||
|
# Only attempt to infer up to WOM-4. See #9425
|
||
|
week_of_months = week_of_months[week_of_months < 4]
|
||
|
if len(week_of_months) == 0 or len(week_of_months) > 1:
|
||
|
return None
|
||
|
|
||
|
# get which week
|
||
|
week = week_of_months[0] + 1
|
||
|
wd = int_to_weekday[weekdays[0]]
|
||
|
|
||
|
return f"WOM-{week}{wd}"
|
||
|
|
||
|
|
||
|
class _TimedeltaFrequencyInferer(_FrequencyInferer):
|
||
|
def _infer_daily_rule(self):
|
||
|
if self.is_unique:
|
||
|
days = self.deltas[0] / _ONE_DAY
|
||
|
if days % 7 == 0:
|
||
|
# Weekly
|
||
|
wd = int_to_weekday[self.rep_stamp.weekday()]
|
||
|
alias = f"W-{wd}"
|
||
|
return _maybe_add_count(alias, days / 7)
|
||
|
else:
|
||
|
return _maybe_add_count("D", days)
|
||
|
|
||
|
|
||
|
def _is_multiple(us, mult: int) -> bool:
|
||
|
return us % mult == 0
|
||
|
|
||
|
|
||
|
def _maybe_add_count(base: str, count: float) -> str:
|
||
|
if count != 1:
|
||
|
assert count == int(count)
|
||
|
count = int(count)
|
||
|
return f"{count}{base}"
|
||
|
else:
|
||
|
return base
|