TSP v5
This commit is contained in:
parent
65f469465a
commit
a16ec52642
@ -34,19 +34,19 @@
|
||||
| | | | | | | | |--- feature_2 > 2.50
|
||||
| | | | | | | | | |--- class: 0
|
||||
| | | | | |--- feature_1 > 2.50
|
||||
| | | | | | |--- feature_0 <= 3.50
|
||||
| | | | | | | |--- class: 0
|
||||
| | | | | | |--- feature_0 > 3.50
|
||||
| | | | | | | |--- feature_1 <= 3.50
|
||||
| | | | | | | | |--- feature_2 <= 2.50
|
||||
| | | | | | | | | |--- class: 1
|
||||
| | | | | | | | |--- feature_2 > 2.50
|
||||
| | | | | | | | | |--- feature_4 <= 2.00
|
||||
| | | | | | | | | | |--- class: 1
|
||||
| | | | | | | | | |--- feature_4 > 2.00
|
||||
| | | | | | | | | | |--- class: 0
|
||||
| | | | | | | |--- feature_1 > 3.50
|
||||
| | | | | | |--- feature_1 <= 3.50
|
||||
| | | | | | | |--- feature_0 <= 3.50
|
||||
| | | | | | | | |--- class: 0
|
||||
| | | | | | | |--- feature_0 > 3.50
|
||||
| | | | | | | | |--- feature_4 <= 2.50
|
||||
| | | | | | | | | |--- class: 1
|
||||
| | | | | | | | |--- feature_4 > 2.50
|
||||
| | | | | | | | | |--- feature_2 <= 2.00
|
||||
| | | | | | | | | | |--- class: 1
|
||||
| | | | | | | | | |--- feature_2 > 2.00
|
||||
| | | | | | | | | | |--- class: 0
|
||||
| | | | | | |--- feature_1 > 3.50
|
||||
| | | | | | | |--- class: 0
|
||||
| | | | |--- feature_3 > 4.50
|
||||
| | | | | |--- class: 0
|
||||
| |--- feature_4 > 3.50
|
||||
@ -59,13 +59,13 @@
|
||||
| | | | | | |--- class: 1
|
||||
| | | | |--- feature_3 > 3.50
|
||||
| | | | | |--- feature_1 <= 2.50
|
||||
| | | | | | |--- feature_0 <= 2.50
|
||||
| | | | | | | |--- class: 0
|
||||
| | | | | | |--- feature_0 > 2.50
|
||||
| | | | | | | |--- feature_3 <= 4.50
|
||||
| | | | | | | | |--- class: 1
|
||||
| | | | | | | |--- feature_3 > 4.50
|
||||
| | | | | | |--- feature_3 <= 4.50
|
||||
| | | | | | | |--- feature_0 <= 2.50
|
||||
| | | | | | | | |--- class: 0
|
||||
| | | | | | | |--- feature_0 > 2.50
|
||||
| | | | | | | | |--- class: 1
|
||||
| | | | | | |--- feature_3 > 4.50
|
||||
| | | | | | | |--- class: 0
|
||||
| | | | | |--- feature_1 > 2.50
|
||||
| | | | | | |--- class: 0
|
||||
| | | |--- feature_4 > 4.50
|
||||
@ -73,19 +73,19 @@
|
||||
| | |--- feature_2 > 1.50
|
||||
| | | |--- class: 0
|
||||
|--- feature_2 > 3.50
|
||||
| |--- feature_4 <= 1.50
|
||||
| | |--- feature_1 <= 1.50
|
||||
| |--- feature_1 <= 1.50
|
||||
| | |--- feature_4 <= 1.50
|
||||
| | | |--- feature_2 <= 4.50
|
||||
| | | | |--- feature_0 <= 1.50
|
||||
| | | | | |--- class: 0
|
||||
| | | | |--- feature_0 > 1.50
|
||||
| | | | | |--- feature_3 <= 4.50
|
||||
| | | | | | |--- class: 1
|
||||
| | | | | |--- feature_3 > 4.50
|
||||
| | | | |--- feature_3 <= 4.50
|
||||
| | | | | |--- feature_0 <= 1.50
|
||||
| | | | | | |--- class: 0
|
||||
| | | | | |--- feature_0 > 1.50
|
||||
| | | | | | |--- class: 1
|
||||
| | | | |--- feature_3 > 4.50
|
||||
| | | | | |--- class: 0
|
||||
| | | |--- feature_2 > 4.50
|
||||
| | | | |--- class: 0
|
||||
| | |--- feature_1 > 1.50
|
||||
| | |--- feature_4 > 1.50
|
||||
| | | |--- class: 0
|
||||
| |--- feature_4 > 1.50
|
||||
| |--- feature_1 > 1.50
|
||||
| | |--- class: 0
|
||||
|
Binary file not shown.
@ -6,21 +6,23 @@ import math
|
||||
|
||||
# klasa tworząca miasta czy też śmietniki
|
||||
class City:
|
||||
def __init__(self, x, y):
|
||||
def __init__(self, x, y, array):
|
||||
self.x = x
|
||||
self.y = y
|
||||
#self.array = array
|
||||
self.array = array
|
||||
# self.dist = distance
|
||||
|
||||
|
||||
|
||||
#dystans to d = sqrt(x^2 + y^2)
|
||||
def distance(self, city):
|
||||
|
||||
#getting distance by astar gives wrong final distance (intial = final)
|
||||
#return get_cost(math.floor(self.x / TILESIZE), math.floor(self.y / TILESIZE), math.floor(city.x / TILESIZE), math.floor(city.y / TILESIZE), self.array)
|
||||
xDis = abs(self.x - city.x)
|
||||
yDis = abs(self.y - city.y)
|
||||
distance = np.sqrt((xDis ** 2) + (yDis ** 2))
|
||||
return distance
|
||||
return get_cost(math.floor(self.x / TILESIZE), math.floor(self.y / TILESIZE), math.floor(city.x / TILESIZE), math.floor(city.y / TILESIZE), self.array)
|
||||
# xDis = abs(self.x - city.x)
|
||||
# yDis = abs(self.y - city.y)
|
||||
# distance = np.sqrt((xDis ** 2) + (yDis ** 2))
|
||||
# return distance
|
||||
|
||||
def __repr__(self):
|
||||
return "(" + str(self.x) + "," + str(self.y) + ")"
|
||||
@ -30,10 +32,11 @@ class City:
|
||||
# inverse of route distance
|
||||
# we want to minimize distance so the larger the fitness the better
|
||||
class Fitness:
|
||||
def __init__(self, route):
|
||||
def __init__(self, route, distanceArray):
|
||||
self.route = route
|
||||
self.distance = 0
|
||||
self.fitness = 0.0
|
||||
self.distanceArray = distanceArray
|
||||
|
||||
def routeDistance(self):
|
||||
if self.distance == 0:
|
||||
@ -45,7 +48,8 @@ class Fitness:
|
||||
toCity = self.route[i + 1]
|
||||
else:
|
||||
toCity = self.route[0]
|
||||
pathDistance += fromCity.distance(toCity)
|
||||
# pathDistance += fromCity.distance(toCity)
|
||||
pathDistance += self.distanceArray[str(fromCity.x)+" "+str(fromCity.y)+" "+str(toCity.x)+" "+str(toCity.y)]
|
||||
self.distance = pathDistance
|
||||
return self.distance
|
||||
|
||||
@ -71,10 +75,10 @@ def initialPopulation(popSize, cityList):
|
||||
|
||||
|
||||
# ranking fitness of given route, output is ordered list with route id and its fitness score
|
||||
def rankRoutes(population):
|
||||
def rankRoutes(population, distanceArray):
|
||||
fitnessResults = {}
|
||||
for i in range(0, len(population)):
|
||||
fitnessResults[i] = Fitness(population[i]).routeFitness()
|
||||
fitnessResults[i] = Fitness(population[i], distanceArray).routeFitness()
|
||||
return sorted(fitnessResults.items(), key=operator.itemgetter(1), reverse=True)
|
||||
|
||||
|
||||
@ -177,8 +181,8 @@ def mutatePopulation(population, mutationRate):
|
||||
|
||||
|
||||
# creating new generation
|
||||
def nextGeneration(currentGen, eliteSize, mutationRate):
|
||||
popRanked = rankRoutes(currentGen) # rank routes in current gen
|
||||
def nextGeneration(currentGen, eliteSize, mutationRate, distanceArray):
|
||||
popRanked = rankRoutes(currentGen, distanceArray) # rank routes in current gen
|
||||
selectionResults = selection(popRanked, eliteSize) # determining potential parents
|
||||
matingpool = matingPool(currentGen, selectionResults) # creating mating pool
|
||||
children = breedPopulation(matingpool, eliteSize) # creating new gen
|
||||
@ -186,15 +190,15 @@ def nextGeneration(currentGen, eliteSize, mutationRate):
|
||||
return nextGeneration
|
||||
|
||||
|
||||
def geneticAlgorithm(population, popSize, eliteSize, mutationRate, generations):
|
||||
def geneticAlgorithm(population, popSize, eliteSize, mutationRate, generations, distanceArray):
|
||||
pop = initialPopulation(popSize, population)
|
||||
print("Initial distance: " + str(1 / rankRoutes(pop)[0][1]))
|
||||
print("Initial distance: " + str(1 / rankRoutes(pop, distanceArray)[0][1]))
|
||||
|
||||
for i in range(0, generations):
|
||||
pop = nextGeneration(pop, eliteSize, mutationRate)
|
||||
pop = nextGeneration(pop, eliteSize, mutationRate, distanceArray)
|
||||
|
||||
print("Final distance: " + str(1 / rankRoutes(pop)[0][1]))
|
||||
bestRouteIndex = rankRoutes(pop)[0][0]
|
||||
print("Final distance: " + str(1 / rankRoutes(pop, distanceArray)[0][1]))
|
||||
bestRouteIndex = rankRoutes(pop, distanceArray)[0][0]
|
||||
bestRoute = pop[bestRouteIndex]
|
||||
return bestRoute
|
||||
|
||||
@ -212,18 +216,29 @@ cityList = []
|
||||
|
||||
# plotting the progress
|
||||
|
||||
def geneticAlgorithmPlot(population, popSize, eliteSize, mutationRate, generations):
|
||||
def distanceFromCityToCity(cityFrom, city, array):
|
||||
return get_cost(math.floor(cityFrom.x / TILESIZE), math.floor(cityFrom.y / TILESIZE), math.floor(city.x / TILESIZE), math.floor(city.y / TILESIZE), array)
|
||||
|
||||
def geneticAlgorithmPlot(population, popSize, eliteSize, mutationRate, generations, array):
|
||||
a_star_distances = {}
|
||||
for city in population:
|
||||
for target in population:
|
||||
if city == target:
|
||||
continue
|
||||
else:
|
||||
a_star_distances[str(city.x)+" "+str(city.y)+" "+str(target.x)+" "+str(target.y)] = distanceFromCityToCity(city, target, array)
|
||||
|
||||
pop = initialPopulation(popSize, population)
|
||||
progress = []
|
||||
progress.append(1 / rankRoutes(pop)[0][1])
|
||||
print("Initial distance: " + str(1 / rankRoutes(pop)[0][1]))
|
||||
progress.append(1 / rankRoutes(pop, a_star_distances)[0][1])
|
||||
print("Initial distance: " + str(1 / rankRoutes(pop, a_star_distances)[0][1]))
|
||||
|
||||
for i in range(0, generations):
|
||||
pop = nextGeneration(pop, eliteSize, mutationRate)
|
||||
progress.append(1 / rankRoutes(pop)[0][1])
|
||||
pop = nextGeneration(pop, eliteSize, mutationRate, a_star_distances)
|
||||
progress.append(1 / rankRoutes(pop, a_star_distances)[0][1])
|
||||
|
||||
print("Final distance: " + str(1 / rankRoutes(pop)[0][1]))
|
||||
bestRouteIndex = rankRoutes(pop)[0][0]
|
||||
print("Final distance: " + str(1 / rankRoutes(pop, a_star_distances)[0][1]))
|
||||
bestRouteIndex = rankRoutes(pop, a_star_distances)[0][0]
|
||||
bestRoute = pop[bestRouteIndex]
|
||||
|
||||
plt.plot(progress)
|
||||
|
BIN
last_map.nparr
BIN
last_map.nparr
Binary file not shown.
10
main.py
10
main.py
@ -148,13 +148,15 @@ class Game():
|
||||
result = prediction.getPrediction(dir + '/' + file, 'trained_nn_20.pth')
|
||||
img = pg.image.load(dir + '/' + file).convert_alpha()
|
||||
img = pg.transform.scale(img, (128, 128))
|
||||
trash = Trash(img, 0, 0, 128, 128)
|
||||
offset_x, offset_y = self.camera.offset()
|
||||
trash = Trash(img, math.floor(-offset_x * TILESIZE), math.floor(-offset_y * TILESIZE), 128, 128)
|
||||
self.trashDisplay.empty()
|
||||
self.trashDisplay.add(trash)
|
||||
self.text_display = result
|
||||
self.draw()
|
||||
# print(result + ' ' + file)
|
||||
pg.time.wait(100)
|
||||
self.text_display = ''
|
||||
self.trashDisplay.empty()
|
||||
self.draw()
|
||||
|
||||
# print(self.positive_actions[0])
|
||||
@ -167,11 +169,11 @@ class Game():
|
||||
for i in self.positive_decision:
|
||||
trash_x, trash_y = i.get_coords()
|
||||
# city_list.append(TSP.City(x=int(trash_x), y=int(trash_y), array=self.mapArray))
|
||||
city_list.append(TSP.City(x=int(trash_x), y=int(trash_y)))
|
||||
city_list.append(TSP.City(x=trash_x, y=trash_y, array=self.mapArray))
|
||||
|
||||
|
||||
# dist = a_star.get_cost
|
||||
self.tsp_list = TSP.geneticAlgorithmPlot(population=city_list, popSize=100, eliteSize=20, mutationRate=0.01, generations=300)
|
||||
self.tsp_list = TSP.geneticAlgorithmPlot(population=city_list, popSize=100, eliteSize=20, mutationRate=0.01, generations=300, array=self.mapArray)
|
||||
print(self.tsp_list)
|
||||
|
||||
def load_data(self):
|
||||
|
@ -4,8 +4,11 @@ from path_search_algorthms import a_star_utils as utils
|
||||
|
||||
def get_cost(start_x: int, start_y: int, target_x: int, target_y: int, array):
|
||||
actions = search_path(start_x, start_y, utils.Rotation.NONE, target_x, target_y, array)
|
||||
print('length')
|
||||
if actions is None:
|
||||
print('0')
|
||||
return 1
|
||||
print(len(actions))
|
||||
return len(actions)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user