Final ver.0.1
This commit is contained in:
parent
03d74b5aee
commit
3e69124248
@ -5,7 +5,7 @@ class genetic:
|
||||
def __init__(self, chrome):
|
||||
self.chrome = chrome
|
||||
self.key = 10
|
||||
self.pop_size = 50
|
||||
self.pop_size = 500
|
||||
self.gen_max = 20
|
||||
self.length = len(chrome) - 1
|
||||
self.div = self.length // 2
|
||||
|
10
main.py
10
main.py
@ -1,8 +1,6 @@
|
||||
# from collections import deque
|
||||
from queue import PriorityQueue
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from neural import *
|
||||
from path_algorithms.a_star import a_star
|
||||
# from path_algorithms.bfs import bfs
|
||||
@ -57,8 +55,8 @@ for i in range(15):
|
||||
rubbish_list.append(Rubbish(screen, j * 60, i * 60))
|
||||
|
||||
path = []
|
||||
X,y = create_training_data()
|
||||
model = learn_neural_network(X,y)
|
||||
x, y = create_training_data()
|
||||
model = learn_neural_network(x, y)
|
||||
|
||||
gen = [(truck.y / 60, truck.x / 60)]
|
||||
fl = 0
|
||||
@ -128,9 +126,9 @@ while True:
|
||||
|
||||
number = np.random.randint(2077)
|
||||
path_img = "images/bbb"
|
||||
img = Image.open(path_img+'/'+str(number)+'.jpg')
|
||||
img = Image.open(path_img + '/' + str(number) + '.jpg')
|
||||
img.show()
|
||||
prediction = predict(model,path_img+'/'+str(number)+'.jpg')
|
||||
prediction = predict(model, path_img + '/' + str(number) + '.jpg')
|
||||
result(prediction)
|
||||
data = rubbish_list[order[0]].data_for_decision_tree()
|
||||
print(f'----------\n'
|
||||
|
@ -1,7 +1,6 @@
|
||||
import math
|
||||
import os
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from keras.layers import Conv2D, MaxPooling2D
|
||||
from keras.layers import Dense, Activation, Flatten
|
||||
|
BIN
trash.xlsx
BIN
trash.xlsx
Binary file not shown.
Loading…
Reference in New Issue
Block a user