ium_464906/model.py

41 lines
1.3 KiB
Python
Raw Normal View History

2024-04-30 10:49:32 +02:00
import tensorflow as tf
import pandas as pd
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split
import json
df = pd.read_csv('OrangeQualityData.csv')
encoder = LabelEncoder()
df["Color"] = encoder.fit_transform(df["Color"])
df["Variety"] = encoder.fit_transform(df["Variety"])
df["Blemishes"] = df["Blemishes (Y/N)"].apply(lambda x: 1 if x.startswith("Y") else 0)
df.drop(columns=["Blemishes (Y/N)"], inplace=True)
X = df.drop(columns=["Quality (1-5)"])
y = df["Quality (1-5)"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(X_train_scaled.shape[1],)),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(1)
])
model.compile(optimizer='sgd', loss='mse')
history = model.fit(X_train_scaled, y_train, epochs=100, verbose=0, validation_data=(X_test_scaled, y_test))
model.save('orange_quality_model_tf.h5')
predictions = model.predict(X_test_scaled)
with open('predictions_tf.json', 'w') as f:
json.dump(predictions.tolist(), f, indent=4)