ium_464913/train_model.py

64 lines
1.5 KiB
Python
Raw Normal View History

2024-04-14 13:36:50 +02:00
import os
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
from keras.models import Sequential
from keras.layers import BatchNormalization, Dropout, Dense, Flatten, Conv1D
from keras.optimizers import Adam
import pandas as pd
2024-05-04 11:41:45 +02:00
import sys
2024-04-14 13:36:50 +02:00
def main():
X_train = pd.read_csv("data/X_train.csv")
2024-04-15 12:58:41 +02:00
X_val = pd.read_csv("data/X_val.csv")
2024-04-14 13:36:50 +02:00
y_train = pd.read_csv("data/y_train.csv")
2024-04-15 12:58:41 +02:00
y_val = pd.read_csv("data/y_val.csv")
2024-04-14 13:36:50 +02:00
X_train = X_train.to_numpy()
2024-04-15 12:58:41 +02:00
X_val = X_val.to_numpy()
2024-04-14 13:36:50 +02:00
y_train = y_train.to_numpy()
2024-04-15 12:58:41 +02:00
y_val = y_val.to_numpy()
2024-04-14 13:36:50 +02:00
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
2024-04-15 12:58:41 +02:00
X_val = X_val.reshape(X_val.shape[0], X_val.shape[1], 1)
2024-04-14 13:36:50 +02:00
2024-05-04 11:41:45 +02:00
learning_rate = float(sys.argv[1])
epochs = int(sys.argv[2])
2024-04-14 13:36:50 +02:00
model = Sequential(
[
Conv1D(32, 2, activation="relu", input_shape=X_train[0].shape),
BatchNormalization(),
Dropout(0.2),
Conv1D(64, 2, activation="relu"),
BatchNormalization(),
Dropout(0.5),
Flatten(),
Dense(64, activation="relu"),
Dropout(0.5),
Dense(1, activation="sigmoid"),
]
)
model.compile(
2024-05-04 11:41:45 +02:00
optimizer=Adam(learning_rate=learning_rate),
2024-04-14 13:36:50 +02:00
loss="binary_crossentropy",
metrics=["accuracy"],
)
model.fit(
X_train,
y_train,
2024-04-15 12:58:41 +02:00
validation_data=(X_val, y_val),
2024-05-04 11:41:45 +02:00
epochs=epochs,
2024-04-14 13:36:50 +02:00
verbose=1,
)
os.makedirs("model", exist_ok=True)
model.save("model/model.keras")
if __name__ == "__main__":
main()