Compare commits
9 Commits
main
...
evaluation
Author | SHA1 | Date | |
---|---|---|---|
96e8535023 | |||
df42bfcee0 | |||
3f95fa102c | |||
0920a59d1f | |||
b1a03b41b0 | |||
9d6ffe8205 | |||
a8cf8d2829 | |||
dace057c96 | |||
ee4c1adab2 |
1
.gitignore
vendored
1
.gitignore
vendored
@ -3,3 +3,4 @@ creditcard.csv
|
||||
data
|
||||
model/model.keras
|
||||
stats_data
|
||||
evaluation
|
@ -2,4 +2,4 @@ FROM ubuntu:latest
|
||||
|
||||
RUN apt update && apt install -y python3-pip
|
||||
|
||||
RUN pip install pandas numpy scikit-learn tensorflow
|
||||
RUN pip install pandas numpy scikit-learn tensorflow matplotlib --break-system-packages
|
74
Jenkinsfile
vendored
74
Jenkinsfile
vendored
@ -1,54 +1,70 @@
|
||||
pipeline {
|
||||
agent any
|
||||
agent {
|
||||
dockerfile true
|
||||
}
|
||||
|
||||
triggers {
|
||||
upstream(upstreamProjects: 's464913-training/training', threshold: hudson.model.Result.SUCCESS)
|
||||
}
|
||||
|
||||
parameters {
|
||||
string (
|
||||
defaultValue: 'vskyper',
|
||||
description: 'Kaggle username',
|
||||
name: 'KAGGLE_USERNAME',
|
||||
trim: false
|
||||
)
|
||||
password (
|
||||
defaultValue: '',
|
||||
description: 'Kaggle API key',
|
||||
name: 'KAGGLE_KEY',
|
||||
buildSelector(
|
||||
defaultSelector: lastSuccessful(),
|
||||
description: 'Which build to use for copying artifacts',
|
||||
name: 'BUILD_SELECTOR'
|
||||
)
|
||||
gitParameter branchFilter: 'origin/(.*)', defaultValue: 'training', name: 'BRANCH', type: 'PT_BRANCH'
|
||||
}
|
||||
|
||||
stages {
|
||||
stage('Clone Repository') {
|
||||
steps {
|
||||
git branch: 'main', url: 'https://git.wmi.amu.edu.pl/s464913/ium_464913.git'
|
||||
git branch: 'evaluation', url: 'https://git.wmi.amu.edu.pl/s464913/ium_464913.git'
|
||||
}
|
||||
}
|
||||
|
||||
stage('Download dataset') {
|
||||
stage('Copy Artifacts from dataset job') {
|
||||
steps {
|
||||
withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}", "KAGGLE_KEY=${params.KAGGLE_KEY}"]) {
|
||||
sh 'pip install kaggle'
|
||||
sh 'kaggle datasets download -d mlg-ulb/creditcardfraud'
|
||||
sh 'unzip -o creditcardfraud.zip'
|
||||
sh 'rm creditcardfraud.zip'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stage('Run create-dataset script') {
|
||||
agent {
|
||||
dockerfile {
|
||||
reuseNode true
|
||||
copyArtifacts filter: 'data/*', projectName: 'z-s464913-create-dataset', selector: buildParameter('BUILD_SELECTOR')
|
||||
}
|
||||
}
|
||||
|
||||
stage('Copy Artifacts from training job') {
|
||||
steps {
|
||||
sh 'chmod +x create-dataset.py'
|
||||
sh 'python3 ./create-dataset.py'
|
||||
copyArtifacts filter: 'model/*', projectName: 's464913-training/' + params.BRANCH, selector: buildParameter('BUILD_SELECTOR')
|
||||
}
|
||||
}
|
||||
|
||||
stage('Copy Artifacts from evaluation job') {
|
||||
steps {
|
||||
copyArtifacts filter: 'evaluation/*', projectName: 's464913-evaluation/evaluation', selector: buildParameter('BUILD_SELECTOR'), optional: true
|
||||
}
|
||||
}
|
||||
|
||||
stage('Run predict script') {
|
||||
steps {
|
||||
sh 'chmod +x predict.py'
|
||||
sh 'python3 ./predict.py'
|
||||
}
|
||||
}
|
||||
|
||||
stage('Run metrics script') {
|
||||
steps {
|
||||
sh 'chmod +x metrics.py'
|
||||
sh "python3 ./metrics.py ${currentBuild.number}"
|
||||
}
|
||||
}
|
||||
|
||||
stage('Run plot script') {
|
||||
steps {
|
||||
sh 'chmod +x plot.py'
|
||||
sh 'python3 ./plot.py'
|
||||
}
|
||||
}
|
||||
|
||||
stage('Archive Artifacts') {
|
||||
steps {
|
||||
archiveArtifacts artifacts: 'data/*', onlyIfSuccessful: true
|
||||
archiveArtifacts artifacts: 'evaluation/*', onlyIfSuccessful: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
19
metrics.py
Normal file
19
metrics.py
Normal file
@ -0,0 +1,19 @@
|
||||
from sklearn.metrics import confusion_matrix
|
||||
import pandas as pd
|
||||
import sys
|
||||
|
||||
|
||||
def main():
|
||||
y_test = pd.read_csv("data/y_test.csv")
|
||||
y_pred = pd.read_csv("evaluation/y_pred.csv", header=None)
|
||||
build_number = sys.argv[1]
|
||||
|
||||
cm = confusion_matrix(y_test, y_pred)
|
||||
accuracy = cm[1, 1] / (cm[1, 0] + cm[1, 1])
|
||||
|
||||
with open(r"evaluation/metrics.txt", "a") as f:
|
||||
f.write(f"{accuracy},{build_number}\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
24
plot.py
Normal file
24
plot.py
Normal file
@ -0,0 +1,24 @@
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def main():
|
||||
accuracy = []
|
||||
build_numbers = []
|
||||
|
||||
with open("evaluation/metrics.txt") as f:
|
||||
for line in f:
|
||||
accuracy.append(float(line.split(",")[0]))
|
||||
build_numbers.append(int(line.split(",")[1]))
|
||||
|
||||
plt.plot(build_numbers, accuracy)
|
||||
plt.xlabel("Build Number")
|
||||
plt.ylabel("Accuracy")
|
||||
plt.title("Accuracy of the model over time")
|
||||
plt.xticks(range(min(build_numbers), max(build_numbers) + 1))
|
||||
plt.show()
|
||||
|
||||
plt.savefig("evaluation/accuracy.png")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
10
predict.py
10
predict.py
@ -4,24 +4,18 @@ os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
|
||||
|
||||
from keras.models import load_model
|
||||
import pandas as pd
|
||||
from sklearn.metrics import confusion_matrix
|
||||
import numpy as np
|
||||
|
||||
|
||||
def main():
|
||||
model = load_model("model/model.keras")
|
||||
X_test = pd.read_csv("data/X_test.csv")
|
||||
y_test = pd.read_csv("data/y_test.csv")
|
||||
|
||||
y_pred = model.predict(X_test)
|
||||
y_pred = y_pred >= 0.5
|
||||
np.savetxt("data/y_pred.csv", y_pred, delimiter=",")
|
||||
|
||||
cm = confusion_matrix(y_test, y_pred)
|
||||
print(
|
||||
"Recall metric in the testing dataset: ",
|
||||
cm[1, 1] / (cm[1, 0] + cm[1, 1]),
|
||||
)
|
||||
os.makedirs("evaluation", exist_ok=True)
|
||||
np.savetxt("evaluation/y_pred.csv", y_pred, delimiter=",")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user