ium_464913/create-dataset.py
2024-04-15 12:58:41 +02:00

55 lines
1.4 KiB
Python

import os
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
def load_data(name):
df = pd.read_csv(name)
return df
def normalize_data(df):
scaler = StandardScaler()
df["Amount"] = scaler.fit_transform(df["Amount"].values.reshape(-1, 1))
return df
def split_data(df):
X = df.iloc[:, df.columns != "Class"]
y = df.iloc[:, df.columns == "Class"]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=0
)
X_train, X_val, y_train, y_val = train_test_split(
X_train, y_train, test_size=0.25, random_state=0
)
return X_train, X_val, X_test, y_train, y_val, y_test
def save_data(df, X_train, X_val, X_test, y_train, y_val, y_test):
df.to_csv("data/creditcard.csv", index=False)
X_train.to_csv("data/X_train.csv", index=False)
X_val.to_csv("data/X_val.csv", index=False)
X_test.to_csv("data/X_test.csv", index=False)
y_train.to_csv("data/y_train.csv", index=False)
y_val.to_csv("data/y_val.csv", index=False)
y_test.to_csv("data/y_test.csv", index=False)
def main():
os.makedirs("data", exist_ok=True)
os.system("rm -rf data/*")
df = load_data("creditcard.csv")
df = normalize_data(df)
X_train, X_val, X_test, y_train, y_val, y_test = split_data(df)
save_data(df, X_train, X_val, X_test, y_train, y_val, y_test)
if __name__ == "__main__":
main()