82 lines
2.2 KiB
Plaintext
82 lines
2.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": true,
|
|
"is_executing": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"from sklearn.model_selection import train_test_split\n",
|
|
"from sklearn.preprocessing import StandardScaler\n",
|
|
"import tensorflow as tf\n",
|
|
"from tensorflow.keras.models import Sequential\n",
|
|
"from tensorflow.keras.layers import Dense\n",
|
|
"\n",
|
|
"# Wczytywanie danych\n",
|
|
"data = pd.read_csv('openpowerlifting.csv')\n",
|
|
"\n",
|
|
"# Zakładając, że kolumny to 'squat', 'bench_press', 'deadlift' i 'total'\n",
|
|
"features = data[['squat', 'bench_press', 'deadlift']]\n",
|
|
"target = data['total']\n",
|
|
"\n",
|
|
"# Podział na dane treningowe i testowe\n",
|
|
"X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42)\n",
|
|
"\n",
|
|
"# Normalizacja danych\n",
|
|
"scaler = StandardScaler()\n",
|
|
"X_train = scaler.fit_transform(X_train)\n",
|
|
"X_test = scaler.transform(X_test) # Używamy tego samego scaler do danych testowych\n",
|
|
"\n",
|
|
"# Tworzenie modelu\n",
|
|
"model = Sequential([\n",
|
|
" Dense(64, activation='relu', input_shape=(X_train.shape[1],)),\n",
|
|
" Dense(64, activation='relu'),\n",
|
|
" Dense(1)\n",
|
|
"])\n",
|
|
"\n",
|
|
"model.compile(optimizer='adam', loss='mse', metrics=['mae'])\n",
|
|
"\n",
|
|
"# Trenowanie modelu\n",
|
|
"model.fit(X_train, y_train, epochs=10, validation_split=0.1) # Używam validation_split zamiast oddzielnego zbioru\n",
|
|
"\n",
|
|
"# Save the model\n",
|
|
"model.save('powerlifting_model.h5')\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|