128 lines
4.2 KiB
Python
128 lines
4.2 KiB
Python
|
import pandas as pd
|
||
|
import os
|
||
|
import numpy as np
|
||
|
from kaggle.api.kaggle_api_extended import KaggleApi
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.linear_model import LogisticRegression
|
||
|
from sklearn.metrics import accuracy_score
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
from sklearn. preprocessing import LabelEncoder
|
||
|
import pickle
|
||
|
|
||
|
|
||
|
def download_dataset(dataset_address, destination_folder):
|
||
|
|
||
|
api = KaggleApi()
|
||
|
api.authenticate()
|
||
|
|
||
|
api.dataset_download_files(dataset_address, path=destination_folder, unzip=True)
|
||
|
|
||
|
|
||
|
def check_datasets_presence():
|
||
|
|
||
|
dataset_1 = "Spotify_Dataset.csv"
|
||
|
dataset_2 = "spotify_songs.csv"
|
||
|
destination_folder = "datasets"
|
||
|
|
||
|
if not os.path.exists(destination_folder):
|
||
|
os.makedirs(destination_folder)
|
||
|
print(f"Utworzono folder: {destination_folder}")
|
||
|
else:
|
||
|
print(f"Folder {destination_folder} już istnieje.")
|
||
|
|
||
|
if dataset_1 not in os.listdir(destination_folder):
|
||
|
download_dataset('gulczas/spotify-dataset', destination_folder)
|
||
|
|
||
|
if dataset_2 not in os.listdir(destination_folder):
|
||
|
download_dataset('joebeachcapital/30000-spotify-songs', destination_folder)
|
||
|
|
||
|
|
||
|
def datasets_preparation():
|
||
|
df_1 = pd.read_csv("datasets/spotify_songs.csv")
|
||
|
df_2 = pd.read_csv("datasets/Spotify_Dataset.csv", sep=";")
|
||
|
|
||
|
df_1 = df_1.dropna()
|
||
|
df_2 = df_2.dropna()
|
||
|
df_2 = df_2.rename(columns={'Title': 'track_name'})
|
||
|
|
||
|
columns_to_remove_df_1 = ['track_id', 'track_album_id', 'track_album_name', 'track_album_release_date',
|
||
|
'playlist_id', 'playlist_subgenre']
|
||
|
columns_to_remove_df_2 = ['Date','# of Artist', 'Artist (Ind.)', '# of Nationality',
|
||
|
'Nationality', 'Continent', 'Points (Total)',
|
||
|
'Points (Ind for each Artist/Nat)', 'id', 'Song URL']
|
||
|
|
||
|
df_1 = df_1.drop(columns=columns_to_remove_df_1)
|
||
|
df_2 = df_2.drop(columns=columns_to_remove_df_2)
|
||
|
df_1 = df_1.drop_duplicates(subset=['track_name'])
|
||
|
df_2 = df_2.drop_duplicates(subset=['track_name'])
|
||
|
|
||
|
le = LabelEncoder()
|
||
|
|
||
|
unique_names_df2 = df_2['track_name'].unique()
|
||
|
diff_df = df_1[~df_1['track_name'].isin(unique_names_df2)]
|
||
|
diff_df = diff_df.iloc[:10000]
|
||
|
|
||
|
#diff_df = pd.concat([diff_df, df_1.iloc[:20]], ignore_index=True)
|
||
|
diff_df['track_artist'] = le.fit_transform(diff_df.track_artist)
|
||
|
diff_df['playlist_name'] = le.fit_transform(diff_df.playlist_name)
|
||
|
diff_df['playlist_genre'] = le.fit_transform(diff_df.playlist_genre)
|
||
|
|
||
|
#df_1 = df_1.iloc[20:]
|
||
|
|
||
|
if "docker_test_dataset.csv" not in os.listdir("datasets"):
|
||
|
diff_df.to_csv("datasets/docker_test_dataset.csv", index=False)
|
||
|
|
||
|
result_df = pd.merge(df_1, df_2, on='track_name', how='inner')
|
||
|
result_df = result_df.drop_duplicates(subset=['track_name'])
|
||
|
columns_to_remove_result_df = ['Rank', 'Artists', 'Danceability', 'Energy', 'Loudness',
|
||
|
'Speechiness', 'Acousticness', 'Instrumentalness', 'Valence']
|
||
|
result_df = result_df.drop(columns=columns_to_remove_result_df)
|
||
|
|
||
|
result_df['track_artist'] = le.fit_transform(result_df.track_artist)
|
||
|
result_df['playlist_name'] = le.fit_transform(result_df.playlist_name)
|
||
|
result_df['playlist_genre'] = le.fit_transform(result_df.playlist_genre)
|
||
|
|
||
|
return result_df
|
||
|
|
||
|
|
||
|
check_datasets_presence()
|
||
|
result_df = datasets_preparation()
|
||
|
Y = result_df[['playlist_genre']]
|
||
|
X = result_df.drop(columns='playlist_genre')
|
||
|
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.10, random_state=42)
|
||
|
|
||
|
|
||
|
Y_train = np.ravel(Y_train)
|
||
|
Y_test = np.ravel(Y_test)
|
||
|
|
||
|
scaler = StandardScaler()
|
||
|
numeric_columns = X_train.select_dtypes(include=['int', 'float']).columns
|
||
|
X_train_scaled = scaler.fit_transform(X_train[numeric_columns])
|
||
|
X_test_scaled = scaler.transform(X_test[numeric_columns])
|
||
|
|
||
|
model = LogisticRegression(max_iter=1000)
|
||
|
model.fit(X_train_scaled, Y_train)
|
||
|
|
||
|
|
||
|
Y_pred = model.predict(X_test_scaled)
|
||
|
|
||
|
accuracy = accuracy_score(Y_test, Y_pred)
|
||
|
print("Accuracy:", accuracy)
|
||
|
|
||
|
file_path = 'model.pkl'
|
||
|
|
||
|
if os.path.exists(file_path):
|
||
|
os.remove(file_path)
|
||
|
|
||
|
if file_path not in os.listdir("./"):
|
||
|
with open(file_path, 'wb') as file:
|
||
|
pickle.dump(model, file)
|
||
|
|
||
|
print("Model został zapisany do pliku:", file_path)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|