forked from s464914/ium_464914
sacred
This commit is contained in:
parent
bc60304c8a
commit
7ff2f9711e
11
Jenkinsfile
vendored
11
Jenkinsfile
vendored
@ -48,5 +48,16 @@ pipeline {
|
||||
}
|
||||
}
|
||||
}
|
||||
stage('Experiments') {
|
||||
steps {
|
||||
script {
|
||||
def customImage = docker.build("custom-image")
|
||||
customImage.inside {
|
||||
sh 'python3 ./sacred_model.py'
|
||||
archiveArtifacts artifacts: 'experiments', onlyIfSuccessful: true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
126
sacred_model.py
Normal file
126
sacred_model.py
Normal file
@ -0,0 +1,126 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import torch.nn.functional as F
|
||||
from sacred import Experiment
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
|
||||
|
||||
device = (
|
||||
"cuda"
|
||||
if torch.cuda.is_available()
|
||||
else "cpu"
|
||||
)
|
||||
|
||||
ex = Experiment("464914", interactive=True, save_git_info=False)
|
||||
ex.observers.append(FileStorageObserver('experiments'))
|
||||
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@tzietkiewicz.vm.wmi.amu.edu.pl:27017',
|
||||
db_name='sacred'))
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, input_features=54, hidden_layer1=25, hidden_layer2=30, output_features=8):
|
||||
super().__init__()
|
||||
self.fc1 = nn.Linear(input_features,output_features)
|
||||
self.bn1 = nn.BatchNorm1d(hidden_layer1) # Add batch normalization
|
||||
self.fc2 = nn.Linear(hidden_layer1, hidden_layer2)
|
||||
self.bn2 = nn.BatchNorm1d(hidden_layer2) # Add batch normalization
|
||||
self.out = nn.Linear(hidden_layer2, output_features)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x)) # Apply batch normalization after first linear layer
|
||||
#x = F.relu(self.bn2(self.fc2(x))) # Apply batch normalization after second linear layer
|
||||
#x = self.out(x)
|
||||
return x
|
||||
|
||||
@ex.capture
|
||||
def capture_params(epochs):
|
||||
print(f"epochs: {epochs}")
|
||||
|
||||
@ex.main
|
||||
def main(_run):
|
||||
forest_train_ex = ex.open_resource('forest_train.csv')
|
||||
forest_val_ex = ex.open_resource('forest_val.csv')
|
||||
|
||||
forest_val = pd.read_csv('forest_val.csv')
|
||||
forest_train = pd.read_csv('forest_train.csv')
|
||||
|
||||
X_train = forest_train.drop(columns=['Cover_Type']).values
|
||||
y_train = forest_train['Cover_Type'].values
|
||||
|
||||
X_val = forest_val.drop(columns=['Cover_Type']).values
|
||||
y_val = forest_val['Cover_Type'].values
|
||||
|
||||
|
||||
# Initialize model, loss function, and optimizer
|
||||
model = Model().to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||||
|
||||
# Convert to PyTorch tensors
|
||||
X_train = torch.tensor(X_train, dtype=torch.float32).to(device)
|
||||
y_train = torch.tensor(y_train, dtype=torch.long).to(device)
|
||||
X_val = torch.tensor(X_val, dtype=torch.float32).to(device)
|
||||
y_val = torch.tensor(y_val, dtype=torch.long).to(device)
|
||||
|
||||
# Create DataLoader
|
||||
train_loader = DataLoader(list(zip(X_train, y_train)), batch_size=64, shuffle=True)
|
||||
val_loader = DataLoader(list(zip(X_val, y_val)), batch_size=64)
|
||||
|
||||
# Training loop
|
||||
epochs = 10
|
||||
for epoch in range(epochs):
|
||||
model.train() # Set model to training mode
|
||||
running_loss = 0.0
|
||||
for inputs, labels in train_loader:
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item() * inputs.size(0)
|
||||
|
||||
# Calculate training loss
|
||||
epoch_loss = running_loss / len(train_loader.dataset)
|
||||
|
||||
# Validation
|
||||
model.eval() # Set model to evaluation mode
|
||||
val_running_loss = 0.0
|
||||
correct = 0
|
||||
total = 0
|
||||
with torch.no_grad():
|
||||
for inputs, labels in val_loader:
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
|
||||
outputs = model(inputs)
|
||||
val_loss = criterion(outputs, labels)
|
||||
val_running_loss += val_loss.item() * inputs.size(0)
|
||||
|
||||
_, predicted = torch.max(outputs, 1)
|
||||
total += labels.size(0)
|
||||
correct += (predicted == labels).sum().item()
|
||||
|
||||
# Calculate validation loss and accuracy
|
||||
val_epoch_loss = val_running_loss / len(val_loader.dataset)
|
||||
val_accuracy = correct / total
|
||||
|
||||
print(f"Epoch {epoch+1}/{epochs}, "
|
||||
f"Train Loss: {epoch_loss:.4f}, "
|
||||
f"Val Loss: {val_epoch_loss:.4f}, "
|
||||
f"Val Accuracy: {val_accuracy:.4f}")
|
||||
_run.log_scalar("train loss", epoch_loss)
|
||||
_run.log_scalar("val loss", val_epoch_loss)
|
||||
|
||||
|
||||
capture_params(epochs)
|
||||
torch.save(model.state_dict(), 'model.pth')
|
||||
ex.add_artifact("model.pth")
|
||||
|
||||
ex.run()
|
Loading…
Reference in New Issue
Block a user