neural network sprawny wraz z interfejsem
@ -51,7 +51,7 @@ def graphsearch(initial_state: State, map, goal_list, fringe: List[Node] = None,
|
||||
explored_states = set()
|
||||
fringe_states = set()
|
||||
|
||||
# root Node
|
||||
# train Node
|
||||
fringe.append(Node(initial_state))
|
||||
fringe_states.add((initial_state.row, initial_state.column, initial_state.direction))
|
||||
|
||||
@ -71,7 +71,7 @@ def graphsearch(initial_state: State, map, goal_list, fringe: List[Node] = None,
|
||||
parent = element.parent
|
||||
|
||||
while parent is not None:
|
||||
# root's action will be None, don't add it
|
||||
# train's action will be None, don't add it
|
||||
if parent.action is not None:
|
||||
actions_sequence.append(parent.action)
|
||||
parent = parent.parent
|
||||
|
BIN
algorithms/neural_network/data/test/grass/grass1.png
Normal file
After Width: | Height: | Size: 814 B |
BIN
algorithms/neural_network/data/test/grass/grass2.png
Normal file
After Width: | Height: | Size: 820 B |
BIN
algorithms/neural_network/data/test/grass/grass3.png
Normal file
After Width: | Height: | Size: 789 B |
BIN
algorithms/neural_network/data/test/grass/grass4.png
Normal file
After Width: | Height: | Size: 1.0 KiB |
BIN
algorithms/neural_network/data/test/sand/sand.png
Normal file
After Width: | Height: | Size: 760 B |
BIN
algorithms/neural_network/data/test/tree/grass_with_tree.jpg
Normal file
After Width: | Height: | Size: 2.2 KiB |
BIN
algorithms/neural_network/data/test/water/water.png
Normal file
After Width: | Height: | Size: 725 B |
BIN
algorithms/neural_network/learnedNetwork.pt
Normal file
22
algorithms/neural_network/neural_network.py
Normal file
@ -0,0 +1,22 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class NeuralNetwork(nn.Module):
|
||||
def __init__(self, num_classes=4):
|
||||
super(NeuralNetwork, self).__init__()
|
||||
self.conv1 = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
||||
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
|
||||
self.conv2 = nn.Conv2d(in_channels=10, out_channels=20, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
||||
self.fc1 = nn.Linear(20*9*9, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.conv1(x))
|
||||
x = self.pool(x)
|
||||
x = F.relu(self.conv2(x))
|
||||
x = self.pool(x)
|
||||
x = x.reshape(x.shape[0], -1)
|
||||
x = self.fc1(x)
|
||||
|
||||
return x
|
91
algorithms/neural_network/neural_network_interface.py
Normal file
@ -0,0 +1,91 @@
|
||||
import torch
|
||||
from common.constants import device, batch_size, num_epochs, learning_rate, setup_photos, id_to_class
|
||||
from watersandtreegrass import WaterSandTreeGrass
|
||||
from torch.utils.data import DataLoader
|
||||
from neural_network import NeuralNetwork
|
||||
from torchvision.io import read_image, ImageReadMode
|
||||
import torch.nn as nn
|
||||
from torch.optim import Adam
|
||||
|
||||
CNN = NeuralNetwork().to(device)
|
||||
|
||||
|
||||
def train(model):
|
||||
model.train()
|
||||
trainset = WaterSandTreeGrass('./data/train_csv_file.csv', './data/train/all', transform=setup_photos)
|
||||
train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True)
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
for batch_idx, (data, targets) in enumerate(train_loader):
|
||||
data = data.to(device=device)
|
||||
targets = targets.to(device=device)
|
||||
|
||||
scores = model(data)
|
||||
loss = criterion(scores, targets)
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
optimizer.step()
|
||||
|
||||
if epoch % 2 == 0:
|
||||
print("epoch: %3d loss: %.4f" % (epoch, loss.item()))
|
||||
|
||||
print("FINISHED!")
|
||||
print("Checking accuracy.")
|
||||
check_accuracy(train_loader)
|
||||
|
||||
torch.save(model.state_dict(), "./learnedNetwork.pt")
|
||||
|
||||
|
||||
def check_accuracy(loader):
|
||||
num_correct = 0
|
||||
num_samples = 0
|
||||
model = NeuralNetwork()
|
||||
|
||||
model.load_state_dict(torch.load("./learnedNetwork.pt"))
|
||||
model = model.to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
model.eval()
|
||||
for x, y in loader:
|
||||
x = x.to(device=device)
|
||||
y = y.to(device=device)
|
||||
|
||||
scores = model(x)
|
||||
|
||||
_, predictions = scores.max(1)
|
||||
num_correct += (predictions == y).sum()
|
||||
num_samples += predictions.size(0)
|
||||
|
||||
print(f"Got {num_correct}/{num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}")
|
||||
|
||||
|
||||
testset_loader = DataLoader(
|
||||
WaterSandTreeGrass('./data/test_csv_file.csv', './data/test/all', transform=setup_photos),
|
||||
batch_size=batch_size
|
||||
)
|
||||
|
||||
|
||||
def what_is_it(img_path):
|
||||
image = read_image(img_path, mode=ImageReadMode.RGB)
|
||||
image = setup_photos(image).unsqueeze(0)
|
||||
model = NeuralNetwork()
|
||||
|
||||
model.load_state_dict(torch.load("./learnedNetwork.pt"))
|
||||
model = model.to(device)
|
||||
image = image.to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
model.eval()
|
||||
idx = int(model(image).argmax(dim=1))
|
||||
return id_to_class[idx]
|
||||
|
||||
|
||||
|
||||
check_accuracy(testset_loader)
|
||||
|
||||
print(what_is_it('./data/test/water/water.png'))
|
28
algorithms/neural_network/watersandtreegrass.py
Normal file
@ -0,0 +1,28 @@
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
import pandas as pd
|
||||
from torchvision.io import read_image, ImageReadMode
|
||||
from common.helpers import createCSV
|
||||
import os
|
||||
|
||||
|
||||
class WaterSandTreeGrass(Dataset):
|
||||
def __init__(self, annotations_file, img_dir, transform=None):
|
||||
createCSV()
|
||||
self.img_labels = pd.read_csv(annotations_file)
|
||||
self.img_dir = img_dir
|
||||
self.transform = transform
|
||||
|
||||
def __len__(self):
|
||||
return len(self.img_labels)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
|
||||
image = read_image(img_path, mode=ImageReadMode.RGB)
|
||||
label = torch.tensor(int(self.img_labels.iloc[idx, 1]))
|
||||
|
||||
if self.transform:
|
||||
image = self.transform(image)
|
||||
|
||||
return image, label
|
||||
|
@ -1,4 +1,6 @@
|
||||
from enum import Enum
|
||||
import torchvision.transforms as transforms
|
||||
import torch
|
||||
|
||||
GAME_TITLE = 'WMICraft'
|
||||
WINDOW_HEIGHT = 800
|
||||
@ -67,3 +69,22 @@ ACTION = {
|
||||
BAR_ANIMATION_SPEED = 1
|
||||
BAR_WIDTH_MULTIPLIER = 0.9 # (0;1>
|
||||
BAR_HEIGHT_MULTIPLIER = 0.1
|
||||
|
||||
#NEURAL_NETWORK
|
||||
learning_rate = 0.001
|
||||
batch_size = 7
|
||||
num_epochs = 10
|
||||
|
||||
device = torch.device('cuda')
|
||||
classes = ['grass', 'sand', 'tree', 'water']
|
||||
|
||||
setup_photos = transforms.Compose([
|
||||
transforms.Resize(36),
|
||||
transforms.CenterCrop(36),
|
||||
transforms.ToPILImage(),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
||||
])
|
||||
|
||||
id_to_class = {i: j for i, j in enumerate(classes)}
|
||||
class_to_id = {value: key for key, value in id_to_class.items()}
|
||||
|
@ -1,5 +1,7 @@
|
||||
import pygame
|
||||
from common.constants import GRID_CELL_PADDING, GRID_CELL_SIZE, COLUMNS, ROWS
|
||||
from common.constants import GRID_CELL_PADDING, GRID_CELL_SIZE, COLUMNS, ROWS, classes, class_to_id
|
||||
import csv
|
||||
import os
|
||||
|
||||
|
||||
def draw_text(text, color, surface, x, y, text_size=30, is_bold=False):
|
||||
@ -12,6 +14,35 @@ def draw_text(text, color, surface, x, y, text_size=30, is_bold=False):
|
||||
textrect.topleft = (x, y)
|
||||
surface.blit(textobj, textrect)
|
||||
|
||||
def createCSV():
|
||||
train_csvfile = open('./data/train_csv_file.csv', 'w', newline="")
|
||||
writer = csv.writer(train_csvfile)
|
||||
writer.writerow(["filename", "type"])
|
||||
|
||||
train_data_path = './data/train'
|
||||
test_data_path = './data/test'
|
||||
|
||||
for class_name in classes:
|
||||
class_dir = train_data_path + "/" + class_name
|
||||
for filename in os.listdir(class_dir):
|
||||
f = os.path.join(class_dir, filename)
|
||||
if os.path.isfile(f):
|
||||
writer.writerow([filename, class_to_id[class_name]])
|
||||
|
||||
test_csvfile = open('./data/test_csv_file.csv', 'w', newline="")
|
||||
writer = csv.writer(test_csvfile)
|
||||
writer.writerow(["filename", "type"])
|
||||
|
||||
for class_name in classes:
|
||||
class_dir = test_data_path + "/" + class_name
|
||||
for filename in os.listdir(class_dir):
|
||||
f = os.path.join(class_dir, filename)
|
||||
if os.path.isfile(f):
|
||||
writer.writerow([filename, class_to_id[class_name]])
|
||||
|
||||
test_csvfile.close()
|
||||
train_csvfile.close()
|
||||
|
||||
|
||||
def print_numbers():
|
||||
display_surface = pygame.display.get_surface()
|
||||
|
@ -46,7 +46,7 @@ class HealthBar:
|
||||
def heal(self, amount):
|
||||
if self.current_hp + amount < self.max_hp:
|
||||
self.current_hp += amount
|
||||
elif self.current_hp + amount > self.max_hp:
|
||||
elif self.current_hp + amount >= self.max_hp:
|
||||
self.current_hp = self.max_hp
|
||||
|
||||
def show(self):
|
||||
|