93 lines
3.0 KiB
Python
93 lines
3.0 KiB
Python
|
"""
|
||
|
Feature agglomeration. Base classes and functions for performing feature
|
||
|
agglomeration.
|
||
|
"""
|
||
|
|
||
|
# Author: V. Michel, A. Gramfort
|
||
|
# License: BSD 3 clause
|
||
|
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy.sparse import issparse
|
||
|
|
||
|
from ..base import TransformerMixin
|
||
|
from ..utils import metadata_routing
|
||
|
from ..utils.deprecation import _deprecate_Xt_in_inverse_transform
|
||
|
from ..utils.validation import check_is_fitted
|
||
|
|
||
|
###############################################################################
|
||
|
# Mixin class for feature agglomeration.
|
||
|
|
||
|
|
||
|
class AgglomerationTransform(TransformerMixin):
|
||
|
"""
|
||
|
A class for feature agglomeration via the transform interface.
|
||
|
"""
|
||
|
|
||
|
# This prevents ``set_split_inverse_transform`` to be generated for the
|
||
|
# non-standard ``Xt`` arg on ``inverse_transform``.
|
||
|
# TODO(1.7): remove when Xt is removed for inverse_transform.
|
||
|
__metadata_request__inverse_transform = {"Xt": metadata_routing.UNUSED}
|
||
|
|
||
|
def transform(self, X):
|
||
|
"""
|
||
|
Transform a new matrix using the built clustering.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like of shape (n_samples, n_features) or \
|
||
|
(n_samples, n_samples)
|
||
|
A M by N array of M observations in N dimensions or a length
|
||
|
M array of M one-dimensional observations.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Y : ndarray of shape (n_samples, n_clusters) or (n_clusters,)
|
||
|
The pooled values for each feature cluster.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
|
||
|
X = self._validate_data(X, reset=False)
|
||
|
if self.pooling_func == np.mean and not issparse(X):
|
||
|
size = np.bincount(self.labels_)
|
||
|
n_samples = X.shape[0]
|
||
|
# a fast way to compute the mean of grouped features
|
||
|
nX = np.array(
|
||
|
[np.bincount(self.labels_, X[i, :]) / size for i in range(n_samples)]
|
||
|
)
|
||
|
else:
|
||
|
nX = [
|
||
|
self.pooling_func(X[:, self.labels_ == l], axis=1)
|
||
|
for l in np.unique(self.labels_)
|
||
|
]
|
||
|
nX = np.array(nX).T
|
||
|
return nX
|
||
|
|
||
|
def inverse_transform(self, X=None, *, Xt=None):
|
||
|
"""
|
||
|
Inverse the transformation and return a vector of size `n_features`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like of shape (n_samples, n_clusters) or (n_clusters,)
|
||
|
The values to be assigned to each cluster of samples.
|
||
|
|
||
|
Xt : array-like of shape (n_samples, n_clusters) or (n_clusters,)
|
||
|
The values to be assigned to each cluster of samples.
|
||
|
|
||
|
.. deprecated:: 1.5
|
||
|
`Xt` was deprecated in 1.5 and will be removed in 1.7. Use `X` instead.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X : ndarray of shape (n_samples, n_features) or (n_features,)
|
||
|
A vector of size `n_samples` with the values of `Xred` assigned to
|
||
|
each of the cluster of samples.
|
||
|
"""
|
||
|
X = _deprecate_Xt_in_inverse_transform(X, Xt)
|
||
|
|
||
|
check_is_fitted(self)
|
||
|
|
||
|
unil, inverse = np.unique(self.labels_, return_inverse=True)
|
||
|
return X[..., inverse]
|