3RNN/Lib/site-packages/tensorflow/python/ops/gen_count_ops.py

350 lines
17 KiB
Python
Raw Permalink Normal View History

2024-05-26 19:49:15 +02:00
"""Python wrappers around TensorFlow ops.
This file is MACHINE GENERATED! Do not edit.
"""
import collections
from tensorflow.python import pywrap_tfe as pywrap_tfe
from tensorflow.python.eager import context as _context
from tensorflow.python.eager import core as _core
from tensorflow.python.eager import execute as _execute
from tensorflow.python.framework import dtypes as _dtypes
from tensorflow.security.fuzzing.py import annotation_types as _atypes
from tensorflow.python.framework import op_def_registry as _op_def_registry
from tensorflow.python.framework import ops as _ops
from tensorflow.python.framework import op_def_library as _op_def_library
from tensorflow.python.util.deprecation import deprecated_endpoints
from tensorflow.python.util import dispatch as _dispatch
from tensorflow.python.util.tf_export import tf_export
from typing import TypeVar, List, Any
from typing_extensions import Annotated
_DenseCountSparseOutputOutput = collections.namedtuple(
"DenseCountSparseOutput",
["output_indices", "output_values", "output_dense_shape"])
TV_DenseCountSparseOutput_T = TypeVar("TV_DenseCountSparseOutput_T", _atypes.Int32, _atypes.Int64)
TV_DenseCountSparseOutput_output_type = TypeVar("TV_DenseCountSparseOutput_output_type", _atypes.Float32, _atypes.Float64, _atypes.Int32, _atypes.Int64)
def dense_count_sparse_output(values: Annotated[Any, TV_DenseCountSparseOutput_T], weights: Annotated[Any, TV_DenseCountSparseOutput_output_type], binary_output: bool, minlength:int=-1, maxlength:int=-1, name=None):
r"""Performs sparse-output bin counting for a tf.tensor input.
Counts the number of times each value occurs in the input.
Args:
values: A `Tensor`. Must be one of the following types: `int32`, `int64`.
Tensor containing data to count.
weights: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`.
A Tensor of the same shape as indices containing per-index weight values. May
also be the empty tensor if no weights are used.
binary_output: A `bool`.
Whether to output the number of occurrences of each value or 1.
minlength: An optional `int` that is `>= -1`. Defaults to `-1`.
Minimum value to count. Can be set to -1 for no minimum.
maxlength: An optional `int` that is `>= -1`. Defaults to `-1`.
Maximum value to count. Can be set to -1 for no maximum.
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (output_indices, output_values, output_dense_shape).
output_indices: A `Tensor` of type `int64`.
output_values: A `Tensor`. Has the same type as `weights`.
output_dense_shape: A `Tensor` of type `int64`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "DenseCountSparseOutput", name, values, weights, "minlength",
minlength, "maxlength", maxlength, "binary_output", binary_output)
_result = _DenseCountSparseOutputOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return dense_count_sparse_output_eager_fallback(
values, weights, minlength=minlength, maxlength=maxlength,
binary_output=binary_output, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
binary_output = _execute.make_bool(binary_output, "binary_output")
if minlength is None:
minlength = -1
minlength = _execute.make_int(minlength, "minlength")
if maxlength is None:
maxlength = -1
maxlength = _execute.make_int(maxlength, "maxlength")
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"DenseCountSparseOutput", values=values, weights=weights,
binary_output=binary_output,
minlength=minlength, maxlength=maxlength,
name=name)
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"), "minlength",
_op._get_attr_int("minlength"), "maxlength",
_op._get_attr_int("maxlength"), "binary_output",
_op._get_attr_bool("binary_output"), "output_type",
_op._get_attr_type("output_type"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"DenseCountSparseOutput", _inputs_flat, _attrs, _result)
_result = _DenseCountSparseOutputOutput._make(_result)
return _result
DenseCountSparseOutput = tf_export("raw_ops.DenseCountSparseOutput")(_ops.to_raw_op(dense_count_sparse_output))
def dense_count_sparse_output_eager_fallback(values: Annotated[Any, TV_DenseCountSparseOutput_T], weights: Annotated[Any, TV_DenseCountSparseOutput_output_type], binary_output: bool, minlength: int, maxlength: int, name, ctx):
binary_output = _execute.make_bool(binary_output, "binary_output")
if minlength is None:
minlength = -1
minlength = _execute.make_int(minlength, "minlength")
if maxlength is None:
maxlength = -1
maxlength = _execute.make_int(maxlength, "maxlength")
_attr_T, (values,) = _execute.args_to_matching_eager([values], ctx, [_dtypes.int32, _dtypes.int64, ])
_attr_output_type, (weights,) = _execute.args_to_matching_eager([weights], ctx, [_dtypes.int32, _dtypes.int64, _dtypes.float32, _dtypes.float64, ])
_inputs_flat = [values, weights]
_attrs = ("T", _attr_T, "minlength", minlength, "maxlength", maxlength,
"binary_output", binary_output, "output_type", _attr_output_type)
_result = _execute.execute(b"DenseCountSparseOutput", 3,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"DenseCountSparseOutput", _inputs_flat, _attrs, _result)
_result = _DenseCountSparseOutputOutput._make(_result)
return _result
_RaggedCountSparseOutputOutput = collections.namedtuple(
"RaggedCountSparseOutput",
["output_indices", "output_values", "output_dense_shape"])
TV_RaggedCountSparseOutput_T = TypeVar("TV_RaggedCountSparseOutput_T", _atypes.Int32, _atypes.Int64)
TV_RaggedCountSparseOutput_output_type = TypeVar("TV_RaggedCountSparseOutput_output_type", _atypes.Float32, _atypes.Float64, _atypes.Int32, _atypes.Int64)
def ragged_count_sparse_output(splits: Annotated[Any, _atypes.Int64], values: Annotated[Any, TV_RaggedCountSparseOutput_T], weights: Annotated[Any, TV_RaggedCountSparseOutput_output_type], binary_output: bool, minlength:int=-1, maxlength:int=-1, name=None):
r"""Performs sparse-output bin counting for a ragged tensor input.
Counts the number of times each value occurs in the input.
Args:
splits: A `Tensor` of type `int64`.
Tensor containing the row splits of the ragged tensor to count.
values: A `Tensor`. Must be one of the following types: `int32`, `int64`.
Tensor containing values of the sparse tensor to count.
weights: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`.
A Tensor of the same shape as indices containing per-index weight values.
May also be the empty tensor if no weights are used.
binary_output: A `bool`.
Whether to output the number of occurrences of each value or 1.
minlength: An optional `int` that is `>= -1`. Defaults to `-1`.
Minimum value to count. Can be set to -1 for no minimum.
maxlength: An optional `int` that is `>= -1`. Defaults to `-1`.
Maximum value to count. Can be set to -1 for no maximum.
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (output_indices, output_values, output_dense_shape).
output_indices: A `Tensor` of type `int64`.
output_values: A `Tensor`. Has the same type as `weights`.
output_dense_shape: A `Tensor` of type `int64`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "RaggedCountSparseOutput", name, splits, values, weights,
"minlength", minlength, "maxlength", maxlength, "binary_output",
binary_output)
_result = _RaggedCountSparseOutputOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return ragged_count_sparse_output_eager_fallback(
splits, values, weights, minlength=minlength, maxlength=maxlength,
binary_output=binary_output, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
binary_output = _execute.make_bool(binary_output, "binary_output")
if minlength is None:
minlength = -1
minlength = _execute.make_int(minlength, "minlength")
if maxlength is None:
maxlength = -1
maxlength = _execute.make_int(maxlength, "maxlength")
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"RaggedCountSparseOutput", splits=splits, values=values,
weights=weights,
binary_output=binary_output,
minlength=minlength, maxlength=maxlength,
name=name)
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"), "minlength",
_op._get_attr_int("minlength"), "maxlength",
_op._get_attr_int("maxlength"), "binary_output",
_op._get_attr_bool("binary_output"), "output_type",
_op._get_attr_type("output_type"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"RaggedCountSparseOutput", _inputs_flat, _attrs, _result)
_result = _RaggedCountSparseOutputOutput._make(_result)
return _result
RaggedCountSparseOutput = tf_export("raw_ops.RaggedCountSparseOutput")(_ops.to_raw_op(ragged_count_sparse_output))
def ragged_count_sparse_output_eager_fallback(splits: Annotated[Any, _atypes.Int64], values: Annotated[Any, TV_RaggedCountSparseOutput_T], weights: Annotated[Any, TV_RaggedCountSparseOutput_output_type], binary_output: bool, minlength: int, maxlength: int, name, ctx):
binary_output = _execute.make_bool(binary_output, "binary_output")
if minlength is None:
minlength = -1
minlength = _execute.make_int(minlength, "minlength")
if maxlength is None:
maxlength = -1
maxlength = _execute.make_int(maxlength, "maxlength")
_attr_T, (values,) = _execute.args_to_matching_eager([values], ctx, [_dtypes.int32, _dtypes.int64, ])
_attr_output_type, (weights,) = _execute.args_to_matching_eager([weights], ctx, [_dtypes.int32, _dtypes.int64, _dtypes.float32, _dtypes.float64, ])
splits = _ops.convert_to_tensor(splits, _dtypes.int64)
_inputs_flat = [splits, values, weights]
_attrs = ("T", _attr_T, "minlength", minlength, "maxlength", maxlength,
"binary_output", binary_output, "output_type", _attr_output_type)
_result = _execute.execute(b"RaggedCountSparseOutput", 3,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"RaggedCountSparseOutput", _inputs_flat, _attrs, _result)
_result = _RaggedCountSparseOutputOutput._make(_result)
return _result
_SparseCountSparseOutputOutput = collections.namedtuple(
"SparseCountSparseOutput",
["output_indices", "output_values", "output_dense_shape"])
TV_SparseCountSparseOutput_T = TypeVar("TV_SparseCountSparseOutput_T", _atypes.Int32, _atypes.Int64)
TV_SparseCountSparseOutput_output_type = TypeVar("TV_SparseCountSparseOutput_output_type", _atypes.Float32, _atypes.Float64, _atypes.Int32, _atypes.Int64)
def sparse_count_sparse_output(indices: Annotated[Any, _atypes.Int64], values: Annotated[Any, TV_SparseCountSparseOutput_T], dense_shape: Annotated[Any, _atypes.Int64], weights: Annotated[Any, TV_SparseCountSparseOutput_output_type], binary_output: bool, minlength:int=-1, maxlength:int=-1, name=None):
r"""Performs sparse-output bin counting for a sparse tensor input.
Counts the number of times each value occurs in the input.
Args:
indices: A `Tensor` of type `int64`.
Tensor containing the indices of the sparse tensor to count.
values: A `Tensor`. Must be one of the following types: `int32`, `int64`.
Tensor containing values of the sparse tensor to count.
dense_shape: A `Tensor` of type `int64`.
Tensor containing the dense shape of the sparse tensor to count.
weights: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`.
A Tensor of the same shape as indices containing per-index weight values.
May also be the empty tensor if no weights are used.
binary_output: A `bool`.
Whether to output the number of occurrences of each value or 1.
minlength: An optional `int` that is `>= -1`. Defaults to `-1`.
Minimum value to count. Can be set to -1 for no minimum.
maxlength: An optional `int` that is `>= -1`. Defaults to `-1`.
Maximum value to count. Can be set to -1 for no maximum.
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (output_indices, output_values, output_dense_shape).
output_indices: A `Tensor` of type `int64`.
output_values: A `Tensor`. Has the same type as `weights`.
output_dense_shape: A `Tensor` of type `int64`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "SparseCountSparseOutput", name, indices, values, dense_shape,
weights, "minlength", minlength, "maxlength", maxlength,
"binary_output", binary_output)
_result = _SparseCountSparseOutputOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return sparse_count_sparse_output_eager_fallback(
indices, values, dense_shape, weights, minlength=minlength,
maxlength=maxlength, binary_output=binary_output, name=name,
ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
binary_output = _execute.make_bool(binary_output, "binary_output")
if minlength is None:
minlength = -1
minlength = _execute.make_int(minlength, "minlength")
if maxlength is None:
maxlength = -1
maxlength = _execute.make_int(maxlength, "maxlength")
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"SparseCountSparseOutput", indices=indices, values=values,
dense_shape=dense_shape, weights=weights,
binary_output=binary_output,
minlength=minlength, maxlength=maxlength,
name=name)
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"), "minlength",
_op._get_attr_int("minlength"), "maxlength",
_op._get_attr_int("maxlength"), "binary_output",
_op._get_attr_bool("binary_output"), "output_type",
_op._get_attr_type("output_type"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"SparseCountSparseOutput", _inputs_flat, _attrs, _result)
_result = _SparseCountSparseOutputOutput._make(_result)
return _result
SparseCountSparseOutput = tf_export("raw_ops.SparseCountSparseOutput")(_ops.to_raw_op(sparse_count_sparse_output))
def sparse_count_sparse_output_eager_fallback(indices: Annotated[Any, _atypes.Int64], values: Annotated[Any, TV_SparseCountSparseOutput_T], dense_shape: Annotated[Any, _atypes.Int64], weights: Annotated[Any, TV_SparseCountSparseOutput_output_type], binary_output: bool, minlength: int, maxlength: int, name, ctx):
binary_output = _execute.make_bool(binary_output, "binary_output")
if minlength is None:
minlength = -1
minlength = _execute.make_int(minlength, "minlength")
if maxlength is None:
maxlength = -1
maxlength = _execute.make_int(maxlength, "maxlength")
_attr_T, (values,) = _execute.args_to_matching_eager([values], ctx, [_dtypes.int32, _dtypes.int64, ])
_attr_output_type, (weights,) = _execute.args_to_matching_eager([weights], ctx, [_dtypes.int32, _dtypes.int64, _dtypes.float32, _dtypes.float64, ])
indices = _ops.convert_to_tensor(indices, _dtypes.int64)
dense_shape = _ops.convert_to_tensor(dense_shape, _dtypes.int64)
_inputs_flat = [indices, values, dense_shape, weights]
_attrs = ("T", _attr_T, "minlength", minlength, "maxlength", maxlength,
"binary_output", binary_output, "output_type", _attr_output_type)
_result = _execute.execute(b"SparseCountSparseOutput", 3,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"SparseCountSparseOutput", _inputs_flat, _attrs, _result)
_result = _SparseCountSparseOutputOutput._make(_result)
return _result