140 lines
4.9 KiB
Python
140 lines
4.9 KiB
Python
|
# Author: Eric Larson
|
||
|
# 2014
|
||
|
|
||
|
"""Tools for MLS generation"""
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from ._max_len_seq_inner import _max_len_seq_inner
|
||
|
|
||
|
__all__ = ['max_len_seq']
|
||
|
|
||
|
|
||
|
# These are definitions of linear shift register taps for use in max_len_seq()
|
||
|
_mls_taps = {2: [1], 3: [2], 4: [3], 5: [3], 6: [5], 7: [6], 8: [7, 6, 1],
|
||
|
9: [5], 10: [7], 11: [9], 12: [11, 10, 4], 13: [12, 11, 8],
|
||
|
14: [13, 12, 2], 15: [14], 16: [15, 13, 4], 17: [14],
|
||
|
18: [11], 19: [18, 17, 14], 20: [17], 21: [19], 22: [21],
|
||
|
23: [18], 24: [23, 22, 17], 25: [22], 26: [25, 24, 20],
|
||
|
27: [26, 25, 22], 28: [25], 29: [27], 30: [29, 28, 7],
|
||
|
31: [28], 32: [31, 30, 10]}
|
||
|
|
||
|
def max_len_seq(nbits, state=None, length=None, taps=None):
|
||
|
"""
|
||
|
Maximum length sequence (MLS) generator.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nbits : int
|
||
|
Number of bits to use. Length of the resulting sequence will
|
||
|
be ``(2**nbits) - 1``. Note that generating long sequences
|
||
|
(e.g., greater than ``nbits == 16``) can take a long time.
|
||
|
state : array_like, optional
|
||
|
If array, must be of length ``nbits``, and will be cast to binary
|
||
|
(bool) representation. If None, a seed of ones will be used,
|
||
|
producing a repeatable representation. If ``state`` is all
|
||
|
zeros, an error is raised as this is invalid. Default: None.
|
||
|
length : int, optional
|
||
|
Number of samples to compute. If None, the entire length
|
||
|
``(2**nbits) - 1`` is computed.
|
||
|
taps : array_like, optional
|
||
|
Polynomial taps to use (e.g., ``[7, 6, 1]`` for an 8-bit sequence).
|
||
|
If None, taps will be automatically selected (for up to
|
||
|
``nbits == 32``).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
seq : array
|
||
|
Resulting MLS sequence of 0's and 1's.
|
||
|
state : array
|
||
|
The final state of the shift register.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The algorithm for MLS generation is generically described in:
|
||
|
|
||
|
https://en.wikipedia.org/wiki/Maximum_length_sequence
|
||
|
|
||
|
The default values for taps are specifically taken from the first
|
||
|
option listed for each value of ``nbits`` in:
|
||
|
|
||
|
https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
|
||
|
|
||
|
.. versionadded:: 0.15.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
MLS uses binary convention:
|
||
|
|
||
|
>>> from scipy.signal import max_len_seq
|
||
|
>>> max_len_seq(4)[0]
|
||
|
array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8)
|
||
|
|
||
|
MLS has a white spectrum (except for DC):
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from numpy.fft import fft, ifft, fftshift, fftfreq
|
||
|
>>> seq = max_len_seq(6)[0]*2-1 # +1 and -1
|
||
|
>>> spec = fft(seq)
|
||
|
>>> N = len(seq)
|
||
|
>>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '.-')
|
||
|
>>> plt.margins(0.1, 0.1)
|
||
|
>>> plt.grid(True)
|
||
|
>>> plt.show()
|
||
|
|
||
|
Circular autocorrelation of MLS is an impulse:
|
||
|
|
||
|
>>> acorrcirc = ifft(spec * np.conj(spec)).real
|
||
|
>>> plt.figure()
|
||
|
>>> plt.plot(np.arange(-N/2+1, N/2+1), fftshift(acorrcirc), '.-')
|
||
|
>>> plt.margins(0.1, 0.1)
|
||
|
>>> plt.grid(True)
|
||
|
>>> plt.show()
|
||
|
|
||
|
Linear autocorrelation of MLS is approximately an impulse:
|
||
|
|
||
|
>>> acorr = np.correlate(seq, seq, 'full')
|
||
|
>>> plt.figure()
|
||
|
>>> plt.plot(np.arange(-N+1, N), acorr, '.-')
|
||
|
>>> plt.margins(0.1, 0.1)
|
||
|
>>> plt.grid(True)
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
taps_dtype = np.int32 if np.intp().itemsize == 4 else np.int64
|
||
|
if taps is None:
|
||
|
if nbits not in _mls_taps:
|
||
|
known_taps = np.array(list(_mls_taps.keys()))
|
||
|
raise ValueError(f'nbits must be between {known_taps.min()} and '
|
||
|
f'{known_taps.max()} if taps is None')
|
||
|
taps = np.array(_mls_taps[nbits], taps_dtype)
|
||
|
else:
|
||
|
taps = np.unique(np.array(taps, taps_dtype))[::-1]
|
||
|
if np.any(taps < 0) or np.any(taps > nbits) or taps.size < 1:
|
||
|
raise ValueError('taps must be non-empty with values between '
|
||
|
'zero and nbits (inclusive)')
|
||
|
taps = np.array(taps) # needed for Cython and Pythran
|
||
|
n_max = (2**nbits) - 1
|
||
|
if length is None:
|
||
|
length = n_max
|
||
|
else:
|
||
|
length = int(length)
|
||
|
if length < 0:
|
||
|
raise ValueError('length must be greater than or equal to 0')
|
||
|
# We use int8 instead of bool here because NumPy arrays of bools
|
||
|
# don't seem to work nicely with Cython
|
||
|
if state is None:
|
||
|
state = np.ones(nbits, dtype=np.int8, order='c')
|
||
|
else:
|
||
|
# makes a copy if need be, ensuring it's 0's and 1's
|
||
|
state = np.array(state, dtype=bool, order='c').astype(np.int8)
|
||
|
if state.ndim != 1 or state.size != nbits:
|
||
|
raise ValueError('state must be a 1-D array of size nbits')
|
||
|
if np.all(state == 0):
|
||
|
raise ValueError('state must not be all zeros')
|
||
|
|
||
|
seq = np.empty(length, dtype=np.int8, order='c')
|
||
|
state = _max_len_seq_inner(taps, state, nbits, length, seq)
|
||
|
return seq, state
|