3RNN/Lib/site-packages/scipy/signal/_max_len_seq.py
2024-05-26 19:49:15 +02:00

140 lines
4.9 KiB
Python

# Author: Eric Larson
# 2014
"""Tools for MLS generation"""
import numpy as np
from ._max_len_seq_inner import _max_len_seq_inner
__all__ = ['max_len_seq']
# These are definitions of linear shift register taps for use in max_len_seq()
_mls_taps = {2: [1], 3: [2], 4: [3], 5: [3], 6: [5], 7: [6], 8: [7, 6, 1],
9: [5], 10: [7], 11: [9], 12: [11, 10, 4], 13: [12, 11, 8],
14: [13, 12, 2], 15: [14], 16: [15, 13, 4], 17: [14],
18: [11], 19: [18, 17, 14], 20: [17], 21: [19], 22: [21],
23: [18], 24: [23, 22, 17], 25: [22], 26: [25, 24, 20],
27: [26, 25, 22], 28: [25], 29: [27], 30: [29, 28, 7],
31: [28], 32: [31, 30, 10]}
def max_len_seq(nbits, state=None, length=None, taps=None):
"""
Maximum length sequence (MLS) generator.
Parameters
----------
nbits : int
Number of bits to use. Length of the resulting sequence will
be ``(2**nbits) - 1``. Note that generating long sequences
(e.g., greater than ``nbits == 16``) can take a long time.
state : array_like, optional
If array, must be of length ``nbits``, and will be cast to binary
(bool) representation. If None, a seed of ones will be used,
producing a repeatable representation. If ``state`` is all
zeros, an error is raised as this is invalid. Default: None.
length : int, optional
Number of samples to compute. If None, the entire length
``(2**nbits) - 1`` is computed.
taps : array_like, optional
Polynomial taps to use (e.g., ``[7, 6, 1]`` for an 8-bit sequence).
If None, taps will be automatically selected (for up to
``nbits == 32``).
Returns
-------
seq : array
Resulting MLS sequence of 0's and 1's.
state : array
The final state of the shift register.
Notes
-----
The algorithm for MLS generation is generically described in:
https://en.wikipedia.org/wiki/Maximum_length_sequence
The default values for taps are specifically taken from the first
option listed for each value of ``nbits`` in:
https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
.. versionadded:: 0.15.0
Examples
--------
MLS uses binary convention:
>>> from scipy.signal import max_len_seq
>>> max_len_seq(4)[0]
array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8)
MLS has a white spectrum (except for DC):
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from numpy.fft import fft, ifft, fftshift, fftfreq
>>> seq = max_len_seq(6)[0]*2-1 # +1 and -1
>>> spec = fft(seq)
>>> N = len(seq)
>>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '.-')
>>> plt.margins(0.1, 0.1)
>>> plt.grid(True)
>>> plt.show()
Circular autocorrelation of MLS is an impulse:
>>> acorrcirc = ifft(spec * np.conj(spec)).real
>>> plt.figure()
>>> plt.plot(np.arange(-N/2+1, N/2+1), fftshift(acorrcirc), '.-')
>>> plt.margins(0.1, 0.1)
>>> plt.grid(True)
>>> plt.show()
Linear autocorrelation of MLS is approximately an impulse:
>>> acorr = np.correlate(seq, seq, 'full')
>>> plt.figure()
>>> plt.plot(np.arange(-N+1, N), acorr, '.-')
>>> plt.margins(0.1, 0.1)
>>> plt.grid(True)
>>> plt.show()
"""
taps_dtype = np.int32 if np.intp().itemsize == 4 else np.int64
if taps is None:
if nbits not in _mls_taps:
known_taps = np.array(list(_mls_taps.keys()))
raise ValueError(f'nbits must be between {known_taps.min()} and '
f'{known_taps.max()} if taps is None')
taps = np.array(_mls_taps[nbits], taps_dtype)
else:
taps = np.unique(np.array(taps, taps_dtype))[::-1]
if np.any(taps < 0) or np.any(taps > nbits) or taps.size < 1:
raise ValueError('taps must be non-empty with values between '
'zero and nbits (inclusive)')
taps = np.array(taps) # needed for Cython and Pythran
n_max = (2**nbits) - 1
if length is None:
length = n_max
else:
length = int(length)
if length < 0:
raise ValueError('length must be greater than or equal to 0')
# We use int8 instead of bool here because NumPy arrays of bools
# don't seem to work nicely with Cython
if state is None:
state = np.ones(nbits, dtype=np.int8, order='c')
else:
# makes a copy if need be, ensuring it's 0's and 1's
state = np.array(state, dtype=bool, order='c').astype(np.int8)
if state.ndim != 1 or state.size != nbits:
raise ValueError('state must be a 1-D array of size nbits')
if np.all(state == 0):
raise ValueError('state must not be all zeros')
seq = np.empty(length, dtype=np.int8, order='c')
state = _max_len_seq_inner(taps, state, nbits, length, seq)
return seq, state