259 lines
11 KiB
Python
259 lines
11 KiB
Python
|
"""Python wrappers around TensorFlow ops.
|
||
|
|
||
|
This file is MACHINE GENERATED! Do not edit.
|
||
|
"""
|
||
|
|
||
|
import collections
|
||
|
|
||
|
from tensorflow.python import pywrap_tfe as pywrap_tfe
|
||
|
from tensorflow.python.eager import context as _context
|
||
|
from tensorflow.python.eager import core as _core
|
||
|
from tensorflow.python.eager import execute as _execute
|
||
|
from tensorflow.python.framework import dtypes as _dtypes
|
||
|
from tensorflow.security.fuzzing.py import annotation_types as _atypes
|
||
|
|
||
|
from tensorflow.python.framework import op_def_registry as _op_def_registry
|
||
|
from tensorflow.python.framework import ops as _ops
|
||
|
from tensorflow.python.framework import op_def_library as _op_def_library
|
||
|
from tensorflow.python.util.deprecation import deprecated_endpoints
|
||
|
from tensorflow.python.util import dispatch as _dispatch
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
from typing import TypeVar, List, Any
|
||
|
from typing_extensions import Annotated
|
||
|
|
||
|
TV_NcclAllReduce_T = TypeVar("TV_NcclAllReduce_T", _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.Int64)
|
||
|
|
||
|
def nccl_all_reduce(input: Annotated[Any, TV_NcclAllReduce_T], reduction: str, num_devices: int, shared_name: str, name=None) -> Annotated[Any, TV_NcclAllReduce_T]:
|
||
|
r"""Outputs a tensor containing the reduction across all input tensors.
|
||
|
|
||
|
Outputs a tensor containing the reduction across all input tensors passed to ops
|
||
|
within the same `shared_name.
|
||
|
|
||
|
The graph should be constructed so if one op runs with shared_name value `c`,
|
||
|
then `num_devices` ops will run with shared_name value `c`. Failure to do so
|
||
|
will cause the graph execution to fail to complete.
|
||
|
|
||
|
input: the input to the reduction
|
||
|
data: the value of the reduction across all `num_devices` devices.
|
||
|
reduction: the reduction operation to perform.
|
||
|
num_devices: The number of devices participating in this reduction.
|
||
|
shared_name: Identifier that shared between ops of the same reduction.
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`.
|
||
|
reduction: A `string` from: `"min", "max", "prod", "sum"`.
|
||
|
num_devices: An `int`.
|
||
|
shared_name: A `string`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `input`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "NcclAllReduce", name, input, "reduction", reduction,
|
||
|
"num_devices", num_devices, "shared_name", shared_name)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return nccl_all_reduce_eager_fallback(
|
||
|
input, reduction=reduction, num_devices=num_devices,
|
||
|
shared_name=shared_name, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
reduction = _execute.make_str(reduction, "reduction")
|
||
|
num_devices = _execute.make_int(num_devices, "num_devices")
|
||
|
shared_name = _execute.make_str(shared_name, "shared_name")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"NcclAllReduce", input=input, reduction=reduction,
|
||
|
num_devices=num_devices, shared_name=shared_name,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("reduction", _op.get_attr("reduction"), "T",
|
||
|
_op._get_attr_type("T"), "num_devices",
|
||
|
_op._get_attr_int("num_devices"), "shared_name",
|
||
|
_op.get_attr("shared_name"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"NcclAllReduce", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
NcclAllReduce = tf_export("raw_ops.NcclAllReduce")(_ops.to_raw_op(nccl_all_reduce))
|
||
|
|
||
|
|
||
|
def nccl_all_reduce_eager_fallback(input: Annotated[Any, TV_NcclAllReduce_T], reduction: str, num_devices: int, shared_name: str, name, ctx) -> Annotated[Any, TV_NcclAllReduce_T]:
|
||
|
reduction = _execute.make_str(reduction, "reduction")
|
||
|
num_devices = _execute.make_int(num_devices, "num_devices")
|
||
|
shared_name = _execute.make_str(shared_name, "shared_name")
|
||
|
_attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ])
|
||
|
_inputs_flat = [input]
|
||
|
_attrs = ("reduction", reduction, "T", _attr_T, "num_devices", num_devices,
|
||
|
"shared_name", shared_name)
|
||
|
_result = _execute.execute(b"NcclAllReduce", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"NcclAllReduce", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_NcclBroadcast_T = TypeVar("TV_NcclBroadcast_T", _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.Int64)
|
||
|
|
||
|
def nccl_broadcast(input: Annotated[Any, TV_NcclBroadcast_T], shape, name=None) -> Annotated[Any, TV_NcclBroadcast_T]:
|
||
|
r"""Sends `input` to all devices that are connected to the output.
|
||
|
|
||
|
Sends `input` to all devices that are connected to the output.
|
||
|
|
||
|
The graph should be constructed so that all ops connected to the output have a
|
||
|
valid device assignment, and the op itself is assigned one of these devices.
|
||
|
|
||
|
input: The input to the broadcast.
|
||
|
output: The same as input.
|
||
|
shape: The shape of the input tensor.
|
||
|
|
||
|
Args:
|
||
|
input: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`.
|
||
|
shape: A `tf.TensorShape` or list of `ints`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `input`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "NcclBroadcast", name, input, "shape", shape)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return nccl_broadcast_eager_fallback(
|
||
|
input, shape=shape, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
shape = _execute.make_shape(shape, "shape")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"NcclBroadcast", input=input, shape=shape, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("T", _op._get_attr_type("T"), "shape", _op.get_attr("shape"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"NcclBroadcast", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
NcclBroadcast = tf_export("raw_ops.NcclBroadcast")(_ops.to_raw_op(nccl_broadcast))
|
||
|
|
||
|
|
||
|
def nccl_broadcast_eager_fallback(input: Annotated[Any, TV_NcclBroadcast_T], shape, name, ctx) -> Annotated[Any, TV_NcclBroadcast_T]:
|
||
|
shape = _execute.make_shape(shape, "shape")
|
||
|
_attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ])
|
||
|
_inputs_flat = [input]
|
||
|
_attrs = ("T", _attr_T, "shape", shape)
|
||
|
_result = _execute.execute(b"NcclBroadcast", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"NcclBroadcast", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
|
||
|
TV_NcclReduce_T = TypeVar("TV_NcclReduce_T", _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int32, _atypes.Int64)
|
||
|
|
||
|
def nccl_reduce(input: Annotated[List[Any], TV_NcclReduce_T], reduction: str, name=None) -> Annotated[Any, TV_NcclReduce_T]:
|
||
|
r"""Reduces `input` from `num_devices` using `reduction` to a single device.
|
||
|
|
||
|
Reduces `input` from `num_devices` using `reduction` to a single device.
|
||
|
|
||
|
The graph should be constructed so that all inputs have a valid device
|
||
|
assignment, and the op itself is assigned one of these devices.
|
||
|
|
||
|
input: The input to the reduction.
|
||
|
data: the value of the reduction across all `num_devices` devices.
|
||
|
reduction: the reduction operation to perform.
|
||
|
|
||
|
Args:
|
||
|
input: A list of at least 1 `Tensor` objects with the same type in: `half`, `float32`, `float64`, `int32`, `int64`.
|
||
|
reduction: A `string` from: `"min", "max", "prod", "sum"`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor`. Has the same type as `input`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "NcclReduce", name, input, "reduction", reduction)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return nccl_reduce_eager_fallback(
|
||
|
input, reduction=reduction, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
if not isinstance(input, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'input' argument to "
|
||
|
"'nccl_reduce' Op, not %r." % input)
|
||
|
_attr_num_devices = len(input)
|
||
|
reduction = _execute.make_str(reduction, "reduction")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"NcclReduce", input=input, reduction=reduction, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("reduction", _op.get_attr("reduction"), "T",
|
||
|
_op._get_attr_type("T"), "num_devices",
|
||
|
_op._get_attr_int("num_devices"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"NcclReduce", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|
||
|
NcclReduce = tf_export("raw_ops.NcclReduce")(_ops.to_raw_op(nccl_reduce))
|
||
|
|
||
|
|
||
|
def nccl_reduce_eager_fallback(input: Annotated[List[Any], TV_NcclReduce_T], reduction: str, name, ctx) -> Annotated[Any, TV_NcclReduce_T]:
|
||
|
if not isinstance(input, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'input' argument to "
|
||
|
"'nccl_reduce' Op, not %r." % input)
|
||
|
_attr_num_devices = len(input)
|
||
|
reduction = _execute.make_str(reduction, "reduction")
|
||
|
_attr_T, input = _execute.args_to_matching_eager(list(input), ctx, [_dtypes.half, _dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.int64, ])
|
||
|
_inputs_flat = list(input)
|
||
|
_attrs = ("reduction", reduction, "T", _attr_T, "num_devices",
|
||
|
_attr_num_devices)
|
||
|
_result = _execute.execute(b"NcclReduce", 1, inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"NcclReduce", _inputs_flat, _attrs, _result)
|
||
|
_result, = _result
|
||
|
return _result
|
||
|
|