3RNN/Lib/site-packages/tensorflow/python/ops/gen_summary_ops.py

734 lines
31 KiB
Python
Raw Normal View History

2024-05-26 19:49:15 +02:00
"""Python wrappers around TensorFlow ops.
This file is MACHINE GENERATED! Do not edit.
"""
import collections
from tensorflow.python import pywrap_tfe as pywrap_tfe
from tensorflow.python.eager import context as _context
from tensorflow.python.eager import core as _core
from tensorflow.python.eager import execute as _execute
from tensorflow.python.framework import dtypes as _dtypes
from tensorflow.security.fuzzing.py import annotation_types as _atypes
from tensorflow.python.framework import op_def_registry as _op_def_registry
from tensorflow.python.framework import ops as _ops
from tensorflow.python.framework import op_def_library as _op_def_library
from tensorflow.python.util.deprecation import deprecated_endpoints
from tensorflow.python.util import dispatch as _dispatch
from tensorflow.python.util.tf_export import tf_export
from typing import TypeVar, List, Any
from typing_extensions import Annotated
def close_summary_writer(writer: Annotated[Any, _atypes.Resource], name=None):
r"""TODO: add doc.
Args:
writer: A `Tensor` of type `resource`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "CloseSummaryWriter", name, writer)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return close_summary_writer_eager_fallback(
writer, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"CloseSummaryWriter", writer=writer, name=name)
return _op
CloseSummaryWriter = tf_export("raw_ops.CloseSummaryWriter")(_ops.to_raw_op(close_summary_writer))
def close_summary_writer_eager_fallback(writer: Annotated[Any, _atypes.Resource], name, ctx):
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
_inputs_flat = [writer]
_attrs = None
_result = _execute.execute(b"CloseSummaryWriter", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
def create_summary_db_writer(writer: Annotated[Any, _atypes.Resource], db_uri: Annotated[Any, _atypes.String], experiment_name: Annotated[Any, _atypes.String], run_name: Annotated[Any, _atypes.String], user_name: Annotated[Any, _atypes.String], name=None):
r"""TODO: add doc.
Args:
writer: A `Tensor` of type `resource`.
db_uri: A `Tensor` of type `string`.
experiment_name: A `Tensor` of type `string`.
run_name: A `Tensor` of type `string`.
user_name: A `Tensor` of type `string`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "CreateSummaryDbWriter", name, writer, db_uri, experiment_name,
run_name, user_name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return create_summary_db_writer_eager_fallback(
writer, db_uri, experiment_name, run_name, user_name, name=name,
ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"CreateSummaryDbWriter", writer=writer, db_uri=db_uri,
experiment_name=experiment_name,
run_name=run_name, user_name=user_name,
name=name)
return _op
CreateSummaryDbWriter = tf_export("raw_ops.CreateSummaryDbWriter")(_ops.to_raw_op(create_summary_db_writer))
def create_summary_db_writer_eager_fallback(writer: Annotated[Any, _atypes.Resource], db_uri: Annotated[Any, _atypes.String], experiment_name: Annotated[Any, _atypes.String], run_name: Annotated[Any, _atypes.String], user_name: Annotated[Any, _atypes.String], name, ctx):
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
db_uri = _ops.convert_to_tensor(db_uri, _dtypes.string)
experiment_name = _ops.convert_to_tensor(experiment_name, _dtypes.string)
run_name = _ops.convert_to_tensor(run_name, _dtypes.string)
user_name = _ops.convert_to_tensor(user_name, _dtypes.string)
_inputs_flat = [writer, db_uri, experiment_name, run_name, user_name]
_attrs = None
_result = _execute.execute(b"CreateSummaryDbWriter", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
def create_summary_file_writer(writer: Annotated[Any, _atypes.Resource], logdir: Annotated[Any, _atypes.String], max_queue: Annotated[Any, _atypes.Int32], flush_millis: Annotated[Any, _atypes.Int32], filename_suffix: Annotated[Any, _atypes.String], name=None):
r"""TODO: add doc.
Args:
writer: A `Tensor` of type `resource`.
logdir: A `Tensor` of type `string`.
max_queue: A `Tensor` of type `int32`.
flush_millis: A `Tensor` of type `int32`.
filename_suffix: A `Tensor` of type `string`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "CreateSummaryFileWriter", name, writer, logdir, max_queue,
flush_millis, filename_suffix)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return create_summary_file_writer_eager_fallback(
writer, logdir, max_queue, flush_millis, filename_suffix, name=name,
ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"CreateSummaryFileWriter", writer=writer, logdir=logdir,
max_queue=max_queue,
flush_millis=flush_millis,
filename_suffix=filename_suffix, name=name)
return _op
CreateSummaryFileWriter = tf_export("raw_ops.CreateSummaryFileWriter")(_ops.to_raw_op(create_summary_file_writer))
def create_summary_file_writer_eager_fallback(writer: Annotated[Any, _atypes.Resource], logdir: Annotated[Any, _atypes.String], max_queue: Annotated[Any, _atypes.Int32], flush_millis: Annotated[Any, _atypes.Int32], filename_suffix: Annotated[Any, _atypes.String], name, ctx):
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
logdir = _ops.convert_to_tensor(logdir, _dtypes.string)
max_queue = _ops.convert_to_tensor(max_queue, _dtypes.int32)
flush_millis = _ops.convert_to_tensor(flush_millis, _dtypes.int32)
filename_suffix = _ops.convert_to_tensor(filename_suffix, _dtypes.string)
_inputs_flat = [writer, logdir, max_queue, flush_millis, filename_suffix]
_attrs = None
_result = _execute.execute(b"CreateSummaryFileWriter", 0,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
_result = None
return _result
def flush_summary_writer(writer: Annotated[Any, _atypes.Resource], name=None):
r"""TODO: add doc.
Args:
writer: A `Tensor` of type `resource`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "FlushSummaryWriter", name, writer)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return flush_summary_writer_eager_fallback(
writer, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"FlushSummaryWriter", writer=writer, name=name)
return _op
FlushSummaryWriter = tf_export("raw_ops.FlushSummaryWriter")(_ops.to_raw_op(flush_summary_writer))
def flush_summary_writer_eager_fallback(writer: Annotated[Any, _atypes.Resource], name, ctx):
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
_inputs_flat = [writer]
_attrs = None
_result = _execute.execute(b"FlushSummaryWriter", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
def import_event(writer: Annotated[Any, _atypes.Resource], event: Annotated[Any, _atypes.String], name=None):
r"""TODO: add doc.
Args:
writer: A `Tensor` of type `resource`.
event: A `Tensor` of type `string`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "ImportEvent", name, writer, event)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return import_event_eager_fallback(
writer, event, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"ImportEvent", writer=writer, event=event, name=name)
return _op
ImportEvent = tf_export("raw_ops.ImportEvent")(_ops.to_raw_op(import_event))
def import_event_eager_fallback(writer: Annotated[Any, _atypes.Resource], event: Annotated[Any, _atypes.String], name, ctx):
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
event = _ops.convert_to_tensor(event, _dtypes.string)
_inputs_flat = [writer, event]
_attrs = None
_result = _execute.execute(b"ImportEvent", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
def summary_writer(shared_name:str="", container:str="", name=None) -> Annotated[Any, _atypes.Resource]:
r"""TODO: add doc.
Args:
shared_name: An optional `string`. Defaults to `""`.
container: An optional `string`. Defaults to `""`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `resource`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "SummaryWriter", name, "shared_name", shared_name, "container",
container)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return summary_writer_eager_fallback(
shared_name=shared_name, container=container, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
if container is None:
container = ""
container = _execute.make_str(container, "container")
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"SummaryWriter", shared_name=shared_name, container=container,
name=name)
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("shared_name", _op.get_attr("shared_name"), "container",
_op.get_attr("container"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"SummaryWriter", _inputs_flat, _attrs, _result)
_result, = _result
return _result
SummaryWriter = tf_export("raw_ops.SummaryWriter")(_ops.to_raw_op(summary_writer))
def summary_writer_eager_fallback(shared_name: str, container: str, name, ctx) -> Annotated[Any, _atypes.Resource]:
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
if container is None:
container = ""
container = _execute.make_str(container, "container")
_inputs_flat = []
_attrs = ("shared_name", shared_name, "container", container)
_result = _execute.execute(b"SummaryWriter", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"SummaryWriter", _inputs_flat, _attrs, _result)
_result, = _result
return _result
def write_audio_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], tensor: Annotated[Any, _atypes.Float32], sample_rate: Annotated[Any, _atypes.Float32], max_outputs:int=3, name=None):
r"""Writes an audio summary.
Writes encoded audio summary `tensor` at `step` with `tag` using summary `writer`.
`sample_rate` is the audio sample rate is Hz.
Args:
writer: A `Tensor` of type `resource`.
step: A `Tensor` of type `int64`.
tag: A `Tensor` of type `string`.
tensor: A `Tensor` of type `float32`.
sample_rate: A `Tensor` of type `float32`.
max_outputs: An optional `int` that is `>= 1`. Defaults to `3`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "WriteAudioSummary", name, writer, step, tag, tensor,
sample_rate, "max_outputs", max_outputs)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return write_audio_summary_eager_fallback(
writer, step, tag, tensor, sample_rate, max_outputs=max_outputs,
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
if max_outputs is None:
max_outputs = 3
max_outputs = _execute.make_int(max_outputs, "max_outputs")
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"WriteAudioSummary", writer=writer, step=step, tag=tag, tensor=tensor,
sample_rate=sample_rate, max_outputs=max_outputs,
name=name)
return _op
WriteAudioSummary = tf_export("raw_ops.WriteAudioSummary")(_ops.to_raw_op(write_audio_summary))
def write_audio_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], tensor: Annotated[Any, _atypes.Float32], sample_rate: Annotated[Any, _atypes.Float32], max_outputs: int, name, ctx):
if max_outputs is None:
max_outputs = 3
max_outputs = _execute.make_int(max_outputs, "max_outputs")
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
step = _ops.convert_to_tensor(step, _dtypes.int64)
tag = _ops.convert_to_tensor(tag, _dtypes.string)
tensor = _ops.convert_to_tensor(tensor, _dtypes.float32)
sample_rate = _ops.convert_to_tensor(sample_rate, _dtypes.float32)
_inputs_flat = [writer, step, tag, tensor, sample_rate]
_attrs = ("max_outputs", max_outputs)
_result = _execute.execute(b"WriteAudioSummary", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
def write_graph_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, _atypes.String], name=None):
r"""Writes a graph summary.
Writes TensorFlow graph `tensor` at `step` using summary `writer`.
Args:
writer: A `Tensor` of type `resource`.
step: A `Tensor` of type `int64`.
tensor: A `Tensor` of type `string`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "WriteGraphSummary", name, writer, step, tensor)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return write_graph_summary_eager_fallback(
writer, step, tensor, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"WriteGraphSummary", writer=writer, step=step, tensor=tensor,
name=name)
return _op
WriteGraphSummary = tf_export("raw_ops.WriteGraphSummary")(_ops.to_raw_op(write_graph_summary))
def write_graph_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, _atypes.String], name, ctx):
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
step = _ops.convert_to_tensor(step, _dtypes.int64)
tensor = _ops.convert_to_tensor(tensor, _dtypes.string)
_inputs_flat = [writer, step, tensor]
_attrs = None
_result = _execute.execute(b"WriteGraphSummary", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
TV_WriteHistogramSummary_T = TypeVar("TV_WriteHistogramSummary_T", _atypes.BFloat16, _atypes.Bool, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8)
def write_histogram_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], values: Annotated[Any, TV_WriteHistogramSummary_T], name=None):
r"""Writes a histogram summary.
Writes histogram `values` at `step` with `tag` using summary `writer`.
Args:
writer: A `Tensor` of type `resource`.
step: A `Tensor` of type `int64`.
tag: A `Tensor` of type `string`.
values: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`, `bool`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "WriteHistogramSummary", name, writer, step, tag, values)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return write_histogram_summary_eager_fallback(
writer, step, tag, values, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"WriteHistogramSummary", writer=writer, step=step, tag=tag,
values=values, name=name)
return _op
WriteHistogramSummary = tf_export("raw_ops.WriteHistogramSummary")(_ops.to_raw_op(write_histogram_summary))
def write_histogram_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], values: Annotated[Any, TV_WriteHistogramSummary_T], name, ctx):
_attr_T, (values,) = _execute.args_to_matching_eager([values], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, _dtypes.bool, ], _dtypes.float32)
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
step = _ops.convert_to_tensor(step, _dtypes.int64)
tag = _ops.convert_to_tensor(tag, _dtypes.string)
_inputs_flat = [writer, step, tag, values]
_attrs = ("T", _attr_T)
_result = _execute.execute(b"WriteHistogramSummary", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
TV_WriteImageSummary_T = TypeVar("TV_WriteImageSummary_T", _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.UInt8)
def write_image_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], tensor: Annotated[Any, TV_WriteImageSummary_T], bad_color: Annotated[Any, _atypes.UInt8], max_images:int=3, name=None):
r"""Writes an image summary.
Writes image `tensor` at `step` with `tag` using summary `writer`.
`tensor` is image with shape [height, width, channels].
Args:
writer: A `Tensor` of type `resource`.
step: A `Tensor` of type `int64`.
tag: A `Tensor` of type `string`.
tensor: A `Tensor`. Must be one of the following types: `uint8`, `float64`, `float32`, `half`.
bad_color: A `Tensor` of type `uint8`.
max_images: An optional `int` that is `>= 1`. Defaults to `3`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "WriteImageSummary", name, writer, step, tag, tensor, bad_color,
"max_images", max_images)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return write_image_summary_eager_fallback(
writer, step, tag, tensor, bad_color, max_images=max_images,
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
if max_images is None:
max_images = 3
max_images = _execute.make_int(max_images, "max_images")
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"WriteImageSummary", writer=writer, step=step, tag=tag, tensor=tensor,
bad_color=bad_color, max_images=max_images,
name=name)
return _op
WriteImageSummary = tf_export("raw_ops.WriteImageSummary")(_ops.to_raw_op(write_image_summary))
def write_image_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], tensor: Annotated[Any, TV_WriteImageSummary_T], bad_color: Annotated[Any, _atypes.UInt8], max_images: int, name, ctx):
if max_images is None:
max_images = 3
max_images = _execute.make_int(max_images, "max_images")
_attr_T, (tensor,) = _execute.args_to_matching_eager([tensor], ctx, [_dtypes.uint8, _dtypes.float64, _dtypes.float32, _dtypes.half, ], _dtypes.float32)
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
step = _ops.convert_to_tensor(step, _dtypes.int64)
tag = _ops.convert_to_tensor(tag, _dtypes.string)
bad_color = _ops.convert_to_tensor(bad_color, _dtypes.uint8)
_inputs_flat = [writer, step, tag, tensor, bad_color]
_attrs = ("max_images", max_images, "T", _attr_T)
_result = _execute.execute(b"WriteImageSummary", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
def write_raw_proto_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, _atypes.String], name=None):
r"""Writes a serialized proto summary.
Writes `tensor`, a serialized proto at `step` using summary `writer`.
Args:
writer: A `Tensor` of type `resource`.
step: A `Tensor` of type `int64`.
tensor: A `Tensor` of type `string`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "WriteRawProtoSummary", name, writer, step, tensor)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return write_raw_proto_summary_eager_fallback(
writer, step, tensor, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"WriteRawProtoSummary", writer=writer, step=step, tensor=tensor,
name=name)
return _op
WriteRawProtoSummary = tf_export("raw_ops.WriteRawProtoSummary")(_ops.to_raw_op(write_raw_proto_summary))
def write_raw_proto_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, _atypes.String], name, ctx):
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
step = _ops.convert_to_tensor(step, _dtypes.int64)
tensor = _ops.convert_to_tensor(tensor, _dtypes.string)
_inputs_flat = [writer, step, tensor]
_attrs = None
_result = _execute.execute(b"WriteRawProtoSummary", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
TV_WriteScalarSummary_T = TypeVar("TV_WriteScalarSummary_T", _atypes.BFloat16, _atypes.Float32, _atypes.Float64, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int64, _atypes.Int8, _atypes.UInt16, _atypes.UInt32, _atypes.UInt64, _atypes.UInt8)
def write_scalar_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], value: Annotated[Any, TV_WriteScalarSummary_T], name=None):
r"""Writes a scalar summary.
Writes scalar `value` at `step` with `tag` using summary `writer`.
Args:
writer: A `Tensor` of type `resource`.
step: A `Tensor` of type `int64`.
tag: A `Tensor` of type `string`.
value: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "WriteScalarSummary", name, writer, step, tag, value)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return write_scalar_summary_eager_fallback(
writer, step, tag, value, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"WriteScalarSummary", writer=writer, step=step, tag=tag, value=value,
name=name)
return _op
WriteScalarSummary = tf_export("raw_ops.WriteScalarSummary")(_ops.to_raw_op(write_scalar_summary))
def write_scalar_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tag: Annotated[Any, _atypes.String], value: Annotated[Any, TV_WriteScalarSummary_T], name, ctx):
_attr_T, (value,) = _execute.args_to_matching_eager([value], ctx, [_dtypes.float32, _dtypes.float64, _dtypes.int32, _dtypes.uint8, _dtypes.int16, _dtypes.int8, _dtypes.int64, _dtypes.bfloat16, _dtypes.uint16, _dtypes.half, _dtypes.uint32, _dtypes.uint64, ])
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
step = _ops.convert_to_tensor(step, _dtypes.int64)
tag = _ops.convert_to_tensor(tag, _dtypes.string)
_inputs_flat = [writer, step, tag, value]
_attrs = ("T", _attr_T)
_result = _execute.execute(b"WriteScalarSummary", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
TV_WriteSummary_T = TypeVar("TV_WriteSummary_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
def write_summary(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, TV_WriteSummary_T], tag: Annotated[Any, _atypes.String], summary_metadata: Annotated[Any, _atypes.String], name=None):
r"""Writes a tensor summary.
Writes `tensor` at `step` with `tag` using summary `writer`.
Args:
writer: A `Tensor` of type `resource`.
step: A `Tensor` of type `int64`.
tensor: A `Tensor`.
tag: A `Tensor` of type `string`.
summary_metadata: A `Tensor` of type `string`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "WriteSummary", name, writer, step, tensor, tag,
summary_metadata)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return write_summary_eager_fallback(
writer, step, tensor, tag, summary_metadata, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"WriteSummary", writer=writer, step=step, tensor=tensor, tag=tag,
summary_metadata=summary_metadata, name=name)
return _op
WriteSummary = tf_export("raw_ops.WriteSummary")(_ops.to_raw_op(write_summary))
def write_summary_eager_fallback(writer: Annotated[Any, _atypes.Resource], step: Annotated[Any, _atypes.Int64], tensor: Annotated[Any, TV_WriteSummary_T], tag: Annotated[Any, _atypes.String], summary_metadata: Annotated[Any, _atypes.String], name, ctx):
_attr_T, (tensor,) = _execute.args_to_matching_eager([tensor], ctx, [])
writer = _ops.convert_to_tensor(writer, _dtypes.resource)
step = _ops.convert_to_tensor(step, _dtypes.int64)
tag = _ops.convert_to_tensor(tag, _dtypes.string)
summary_metadata = _ops.convert_to_tensor(summary_metadata, _dtypes.string)
_inputs_flat = [writer, step, tensor, tag, summary_metadata]
_attrs = ("T", _attr_T)
_result = _execute.execute(b"WriteSummary", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result