3RNN/Lib/site-packages/tensorflow/python/ops/linalg_ops_impl.py

84 lines
3.1 KiB
Python
Raw Normal View History

2024-05-26 19:49:15 +02:00
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Operations for linear algebra."""
import numpy as np
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.util import compat
# Names below are lower_case.
# pylint: disable=invalid-name
def eye(num_rows,
num_columns=None,
batch_shape=None,
dtype=dtypes.float32,
name=None):
"""Construct an identity matrix, or a batch of matrices.
See `linalg_ops.eye`.
"""
with ops.name_scope(
name, default_name='eye', values=[num_rows, num_columns, batch_shape]):
is_square = num_columns is None
batch_shape = [] if batch_shape is None else batch_shape
num_columns = num_rows if num_columns is None else num_columns
# We cannot statically infer what the diagonal size should be:
if (isinstance(num_rows, tensor.Tensor) or
isinstance(num_columns, tensor.Tensor)):
diag_size = math_ops.minimum(num_rows, num_columns)
else:
# We can statically infer the diagonal size, and whether it is square.
if not isinstance(num_rows, compat.integral_types) or not isinstance(
num_columns, compat.integral_types):
raise TypeError(
'Arguments `num_rows` and `num_columns` must be positive integer '
f'values. Received: num_rows={num_rows}, num_columns={num_columns}')
is_square = num_rows == num_columns
diag_size = np.minimum(num_rows, num_columns)
# We can not statically infer the shape of the tensor.
if isinstance(batch_shape, tensor.Tensor) or isinstance(
diag_size, tensor.Tensor
):
batch_shape = ops.convert_to_tensor(
batch_shape, name='shape', dtype=dtypes.int32
)
diag_shape = array_ops.concat((batch_shape, [diag_size]), axis=0)
if not is_square:
shape = array_ops.concat((batch_shape, [num_rows, num_columns]), axis=0)
# We can statically infer everything.
else:
batch_shape = list(batch_shape)
diag_shape = batch_shape + [diag_size]
if not is_square:
shape = batch_shape + [num_rows, num_columns]
diag_ones = array_ops.ones(diag_shape, dtype=dtype)
if is_square:
return array_ops.matrix_diag(diag_ones)
else:
zero_matrix = array_ops.zeros(shape, dtype=dtype)
return array_ops.matrix_set_diag(zero_matrix, diag_ones)
# pylint: enable=invalid-name,redefined-builtin