3RNN/Lib/site-packages/tensorflow/python/training/gradient_descent.py

83 lines
3.3 KiB
Python
Raw Normal View History

2024-05-26 19:49:15 +02:00
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""GradientDescent for TensorFlow."""
from tensorflow.python.framework import indexed_slices
from tensorflow.python.framework import ops
from tensorflow.python.ops import gen_training_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.training import optimizer
from tensorflow.python.util.tf_export import tf_export
@tf_export(v1=["train.GradientDescentOptimizer"])
class GradientDescentOptimizer(optimizer.Optimizer):
"""Optimizer that implements the gradient descent algorithm.
"""
def __init__(self, learning_rate, use_locking=False, name="GradientDescent"):
"""Construct a new gradient descent optimizer.
Args:
learning_rate: A Tensor or a floating point value. The learning
rate to use.
use_locking: If True use locks for update operations.
name: Optional name prefix for the operations created when applying
gradients. Defaults to "GradientDescent".
@compatibility(eager)
When eager execution is enabled, `learning_rate` can be a callable that
takes no arguments and returns the actual value to use. This can be useful
for changing these values across different invocations of optimizer
functions.
@end_compatibility
"""
super(GradientDescentOptimizer, self).__init__(use_locking, name)
self._learning_rate = learning_rate
self._learning_rate_tensor = None
def _apply_dense(self, grad, var):
return gen_training_ops.apply_gradient_descent(
var,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
grad,
use_locking=self._use_locking).op
def _resource_apply_dense(self, grad, handle):
return gen_training_ops.resource_apply_gradient_descent(
handle.handle, math_ops.cast(self._learning_rate_tensor,
grad.dtype.base_dtype),
grad, use_locking=self._use_locking)
def _resource_apply_sparse_duplicate_indices(self, grad, handle, indices):
return resource_variable_ops.resource_scatter_add(
handle.handle,
indices,
-grad * math_ops.cast(self._learning_rate_tensor,
grad.dtype.base_dtype))
def _apply_sparse_duplicate_indices(self, grad, var):
delta = indexed_slices.IndexedSlices(
grad.values *
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
grad.indices, grad.dense_shape)
return var.scatter_sub(delta, use_locking=self._use_locking)
def _prepare(self):
learning_rate = self._call_if_callable(self._learning_rate)
self._learning_rate_tensor = ops.convert_to_tensor(
learning_rate, name="learning_rate")