83 lines
3.3 KiB
Python
83 lines
3.3 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
"""GradientDescent for TensorFlow."""
|
||
|
from tensorflow.python.framework import indexed_slices
|
||
|
from tensorflow.python.framework import ops
|
||
|
from tensorflow.python.ops import gen_training_ops
|
||
|
from tensorflow.python.ops import math_ops
|
||
|
from tensorflow.python.ops import resource_variable_ops
|
||
|
from tensorflow.python.training import optimizer
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
@tf_export(v1=["train.GradientDescentOptimizer"])
|
||
|
class GradientDescentOptimizer(optimizer.Optimizer):
|
||
|
"""Optimizer that implements the gradient descent algorithm.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, learning_rate, use_locking=False, name="GradientDescent"):
|
||
|
"""Construct a new gradient descent optimizer.
|
||
|
|
||
|
Args:
|
||
|
learning_rate: A Tensor or a floating point value. The learning
|
||
|
rate to use.
|
||
|
use_locking: If True use locks for update operations.
|
||
|
name: Optional name prefix for the operations created when applying
|
||
|
gradients. Defaults to "GradientDescent".
|
||
|
|
||
|
@compatibility(eager)
|
||
|
When eager execution is enabled, `learning_rate` can be a callable that
|
||
|
takes no arguments and returns the actual value to use. This can be useful
|
||
|
for changing these values across different invocations of optimizer
|
||
|
functions.
|
||
|
@end_compatibility
|
||
|
"""
|
||
|
super(GradientDescentOptimizer, self).__init__(use_locking, name)
|
||
|
self._learning_rate = learning_rate
|
||
|
self._learning_rate_tensor = None
|
||
|
|
||
|
def _apply_dense(self, grad, var):
|
||
|
return gen_training_ops.apply_gradient_descent(
|
||
|
var,
|
||
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
||
|
grad,
|
||
|
use_locking=self._use_locking).op
|
||
|
|
||
|
def _resource_apply_dense(self, grad, handle):
|
||
|
return gen_training_ops.resource_apply_gradient_descent(
|
||
|
handle.handle, math_ops.cast(self._learning_rate_tensor,
|
||
|
grad.dtype.base_dtype),
|
||
|
grad, use_locking=self._use_locking)
|
||
|
|
||
|
def _resource_apply_sparse_duplicate_indices(self, grad, handle, indices):
|
||
|
return resource_variable_ops.resource_scatter_add(
|
||
|
handle.handle,
|
||
|
indices,
|
||
|
-grad * math_ops.cast(self._learning_rate_tensor,
|
||
|
grad.dtype.base_dtype))
|
||
|
|
||
|
def _apply_sparse_duplicate_indices(self, grad, var):
|
||
|
delta = indexed_slices.IndexedSlices(
|
||
|
grad.values *
|
||
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
||
|
grad.indices, grad.dense_shape)
|
||
|
return var.scatter_sub(delta, use_locking=self._use_locking)
|
||
|
|
||
|
def _prepare(self):
|
||
|
learning_rate = self._call_if_callable(self._learning_rate)
|
||
|
self._learning_rate_tensor = ops.convert_to_tensor(
|
||
|
learning_rate, name="learning_rate")
|