3RNN/Lib/site-packages/tensorflow/python/eager/benchmarks_test_base.py
2024-05-26 19:49:15 +02:00

78 lines
3.4 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Benchmark base to run and report benchmark results."""
import os
import uuid
from tensorflow.python.eager import test
from tensorflow.python.platform import flags
from tensorflow.python.profiler import profiler_v2 as profiler
flags.DEFINE_bool("xprof", False, "Run and report benchmarks with xprof on")
flags.DEFINE_string("logdir", "/tmp/xprof/", "Directory to store xprof data")
class MicroBenchmarksBase(test.Benchmark):
"""Run and report benchmark results.
The first run is without any profilng.
Second run is with xprof and python trace. Third run is with xprof without
python trace. Note: xprof runs are with fewer iterations.
"""
def run_with_xprof(self, enable_python_trace, run_benchmark, func,
num_iters_xprof, execution_mode, suid):
if enable_python_trace:
options = profiler.ProfilerOptions(python_tracer_level=1)
logdir = os.path.join(flags.FLAGS.logdir, suid + "_with_python")
else:
options = profiler.ProfilerOptions(python_tracer_level=0)
logdir = os.path.join(flags.FLAGS.logdir, suid)
with profiler.Profile(logdir, options):
total_time = run_benchmark(func, num_iters_xprof, execution_mode)
us_per_example = float("{0:.3f}".format(total_time * 1e6 / num_iters_xprof))
return logdir, us_per_example
def run_report(self, run_benchmark, func, num_iters, execution_mode=None):
"""Run and report benchmark results."""
total_time = run_benchmark(func, num_iters, execution_mode)
mean_us = total_time * 1e6 / num_iters
extras = {
"examples_per_sec": float("{0:.3f}".format(num_iters / total_time)),
"us_per_example": float("{0:.3f}".format(total_time * 1e6 / num_iters))
}
if flags.FLAGS.xprof:
suid = str(uuid.uuid4())
# Re-run with xprof and python trace.
num_iters_xprof = min(100, num_iters)
xprof_link, us_per_example = self.run_with_xprof(True, run_benchmark,
func, num_iters_xprof,
execution_mode, suid)
extras["xprof link with python trace"] = xprof_link
extras["us_per_example with xprof and python"] = us_per_example
# Re-run with xprof but no python trace.
xprof_link, us_per_example = self.run_with_xprof(False, run_benchmark,
func, num_iters_xprof,
execution_mode, suid)
extras["xprof link"] = xprof_link
extras["us_per_example with xprof"] = us_per_example
benchmark_name = self._get_benchmark_name()
self.report_benchmark(
iters=num_iters, wall_time=mean_us, extras=extras, name=benchmark_name)