3RNN/Lib/site-packages/tensorflow/python/framework/test_ops.py
2024-05-26 19:49:15 +02:00

8774 lines
299 KiB
Python

"""Python wrappers around TensorFlow ops.
This file is MACHINE GENERATED! Do not edit.
"""
import collections
from tensorflow.python import pywrap_tfe as pywrap_tfe
from tensorflow.python.eager import context as _context
from tensorflow.python.eager import core as _core
from tensorflow.python.eager import execute as _execute
from tensorflow.python.framework import dtypes as _dtypes
from tensorflow.security.fuzzing.py import annotation_types as _atypes
from tensorflow.python.framework import op_def_registry as _op_def_registry
from tensorflow.python.framework import ops as _ops
from tensorflow.python.framework import op_def_library as _op_def_library
from tensorflow.python.util.deprecation import deprecated_endpoints
from tensorflow.python.util import dispatch as _dispatch
from tensorflow.python.util.tf_export import tf_export
from typing import TypeVar, List, Any
from typing_extensions import Annotated
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('a')
def a(name=None) -> Annotated[Any, _atypes.Float32]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "A", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_a(
(name,), None)
if _result is not NotImplemented:
return _result
return a_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
a, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_a(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"A", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
a, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"A", _inputs_flat, _attrs, _result)
_result, = _result
return _result
A = tf_export("raw_ops.A")(_ops.to_raw_op(a))
_dispatcher_for_a = a._tf_type_based_dispatcher.Dispatch
def a_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Float32]:
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"A", 1, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"A", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr')
def attr(a: int, name=None):
r"""TODO: add doc.
Args:
a: An `int`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Attr", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
a = _execute.make_int(a, "a")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Attr", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
Attr = tf_export("raw_ops.Attr")(_ops.to_raw_op(attr))
_dispatcher_for_attr = attr._tf_type_based_dispatcher.Dispatch
def attr_eager_fallback(a: int, name, ctx):
a = _execute.make_int(a, "a")
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"Attr", 0, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_bool')
def attr_bool(a: bool, name=None):
r"""TODO: add doc.
Args:
a: A `bool`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrBool", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_bool(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_bool_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_bool, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_bool(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
a = _execute.make_bool(a, "a")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrBool", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_bool, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrBool = tf_export("raw_ops.AttrBool")(_ops.to_raw_op(attr_bool))
_dispatcher_for_attr_bool = attr_bool._tf_type_based_dispatcher.Dispatch
def attr_bool_eager_fallback(a: bool, name, ctx):
a = _execute.make_bool(a, "a")
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrBool", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_bool_list')
def attr_bool_list(a, name=None):
r"""TODO: add doc.
Args:
a: A list of `bools`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrBoolList", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_bool_list(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_bool_list_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_bool_list, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_bool_list(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_bool_list' Op, not %r." % a)
a = [_execute.make_bool(_b, "a") for _b in a]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrBoolList", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_bool_list, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrBoolList = tf_export("raw_ops.AttrBoolList")(_ops.to_raw_op(attr_bool_list))
_dispatcher_for_attr_bool_list = attr_bool_list._tf_type_based_dispatcher.Dispatch
def attr_bool_list_eager_fallback(a, name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_bool_list' Op, not %r." % a)
a = [_execute.make_bool(_b, "a") for _b in a]
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrBoolList", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_default')
def attr_default(a:str="banana", name=None):
r"""TODO: add doc.
Args:
a: An optional `string`. Defaults to `"banana"`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrDefault", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_default(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_default_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_default, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_default(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if a is None:
a = "banana"
a = _execute.make_str(a, "a")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrDefault", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_default, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrDefault = tf_export("raw_ops.AttrDefault")(_ops.to_raw_op(attr_default))
_dispatcher_for_attr_default = attr_default._tf_type_based_dispatcher.Dispatch
def attr_default_eager_fallback(a: str, name, ctx):
if a is None:
a = "banana"
a = _execute.make_str(a, "a")
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrDefault", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_empty_list_default')
def attr_empty_list_default(a=[], name=None):
r"""TODO: add doc.
Args:
a: An optional list of `floats`. Defaults to `[]`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrEmptyListDefault", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_empty_list_default(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_empty_list_default_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_empty_list_default, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_empty_list_default(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if a is None:
a = []
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_empty_list_default' Op, not %r." % a)
a = [_execute.make_float(_f, "a") for _f in a]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrEmptyListDefault", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_empty_list_default, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrEmptyListDefault = tf_export("raw_ops.AttrEmptyListDefault")(_ops.to_raw_op(attr_empty_list_default))
_dispatcher_for_attr_empty_list_default = attr_empty_list_default._tf_type_based_dispatcher.Dispatch
def attr_empty_list_default_eager_fallback(a, name, ctx):
if a is None:
a = []
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_empty_list_default' Op, not %r." % a)
a = [_execute.make_float(_f, "a") for _f in a]
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrEmptyListDefault", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_enum')
def attr_enum(a: str, name=None):
r"""TODO: add doc.
Args:
a: A `string` from: `"apples", "oranges"`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrEnum", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_enum(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_enum_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_enum, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_enum(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
a = _execute.make_str(a, "a")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrEnum", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_enum, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrEnum = tf_export("raw_ops.AttrEnum")(_ops.to_raw_op(attr_enum))
_dispatcher_for_attr_enum = attr_enum._tf_type_based_dispatcher.Dispatch
def attr_enum_eager_fallback(a: str, name, ctx):
a = _execute.make_str(a, "a")
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrEnum", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_enum_list')
def attr_enum_list(a, name=None):
r"""TODO: add doc.
Args:
a: A list of `strings` from: `"apples", "oranges"`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrEnumList", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_enum_list(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_enum_list_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_enum_list, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_enum_list(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_enum_list' Op, not %r." % a)
a = [_execute.make_str(_s, "a") for _s in a]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrEnumList", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_enum_list, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrEnumList = tf_export("raw_ops.AttrEnumList")(_ops.to_raw_op(attr_enum_list))
_dispatcher_for_attr_enum_list = attr_enum_list._tf_type_based_dispatcher.Dispatch
def attr_enum_list_eager_fallback(a, name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_enum_list' Op, not %r." % a)
a = [_execute.make_str(_s, "a") for _s in a]
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrEnumList", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_float')
def attr_float(a: float, name=None):
r"""TODO: add doc.
Args:
a: A `float`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrFloat", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_float(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_float_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_float, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_float(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
a = _execute.make_float(a, "a")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrFloat", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_float, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrFloat = tf_export("raw_ops.AttrFloat")(_ops.to_raw_op(attr_float))
_dispatcher_for_attr_float = attr_float._tf_type_based_dispatcher.Dispatch
def attr_float_eager_fallback(a: float, name, ctx):
a = _execute.make_float(a, "a")
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrFloat", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_list_default')
def attr_list_default(a=[5, 15], name=None):
r"""TODO: add doc.
Args:
a: An optional list of `ints`. Defaults to `[5, 15]`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrListDefault", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_list_default(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_list_default_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_list_default, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_list_default(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if a is None:
a = [5, 15]
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_list_default' Op, not %r." % a)
a = [_execute.make_int(_i, "a") for _i in a]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrListDefault", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_list_default, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrListDefault = tf_export("raw_ops.AttrListDefault")(_ops.to_raw_op(attr_list_default))
_dispatcher_for_attr_list_default = attr_list_default._tf_type_based_dispatcher.Dispatch
def attr_list_default_eager_fallback(a, name, ctx):
if a is None:
a = [5, 15]
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_list_default' Op, not %r." % a)
a = [_execute.make_int(_i, "a") for _i in a]
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrListDefault", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_list_min')
def attr_list_min(a, name=None):
r"""TODO: add doc.
Args:
a: A list of `ints` that has length `>= 2`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrListMin", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_list_min(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_list_min_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_list_min, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_list_min(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_list_min' Op, not %r." % a)
a = [_execute.make_int(_i, "a") for _i in a]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrListMin", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_list_min, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrListMin = tf_export("raw_ops.AttrListMin")(_ops.to_raw_op(attr_list_min))
_dispatcher_for_attr_list_min = attr_list_min._tf_type_based_dispatcher.Dispatch
def attr_list_min_eager_fallback(a, name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_list_min' Op, not %r." % a)
a = [_execute.make_int(_i, "a") for _i in a]
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrListMin", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
TV_AttrListTypeDefault_T = TypeVar("TV_AttrListTypeDefault_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_list_type_default')
def attr_list_type_default(a: Annotated[List[Any], TV_AttrListTypeDefault_T], b: Annotated[List[Any], TV_AttrListTypeDefault_T], name=None):
r"""TODO: add doc.
Args:
a: A list of at least 1 `Tensor` objects with the same type.
b: A list with the same length as `a` of `Tensor` objects with the same type as `a`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrListTypeDefault", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_list_type_default(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return attr_list_type_default_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_list_type_default, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_list_type_default(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_list_type_default' Op, not %r." % a)
_attr_N = len(a)
if not isinstance(b, (list, tuple)):
raise TypeError(
"Expected list for 'b' argument to "
"'attr_list_type_default' Op, not %r." % b)
if len(b) != _attr_N:
raise ValueError(
"List argument 'b' to 'attr_list_type_default' Op with length %d "
"must match length %d of argument 'a'." %
(len(b), _attr_N))
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrListTypeDefault", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_list_type_default, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrListTypeDefault = tf_export("raw_ops.AttrListTypeDefault")(_ops.to_raw_op(attr_list_type_default))
_dispatcher_for_attr_list_type_default = attr_list_type_default._tf_type_based_dispatcher.Dispatch
def attr_list_type_default_eager_fallback(a: Annotated[List[Any], TV_AttrListTypeDefault_T], b: Annotated[List[Any], TV_AttrListTypeDefault_T], name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_list_type_default' Op, not %r." % a)
_attr_N = len(a)
if not isinstance(b, (list, tuple)):
raise TypeError(
"Expected list for 'b' argument to "
"'attr_list_type_default' Op, not %r." % b)
if len(b) != _attr_N:
raise ValueError(
"List argument 'b' to 'attr_list_type_default' Op with length %d "
"must match length %d of argument 'a'." %
(len(b), _attr_N))
_attr_T, _inputs_T = _execute.args_to_matching_eager(list(a) + list(b), ctx, [], _dtypes.int32)
_inputs_T = [_inputs_T[:_attr_N]] + _inputs_T[_attr_N:]
_inputs_T = _inputs_T[:1] + [_inputs_T[1:]]
(a, b) = _inputs_T
_inputs_flat = list(a) + list(b)
_attrs = ("T", _attr_T, "N", _attr_N)
_result = _execute.execute(b"AttrListTypeDefault", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_min')
def attr_min(a: int, name=None):
r"""TODO: add doc.
Args:
a: An `int` that is `>= 5`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrMin", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_min(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_min_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_min, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_min(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
a = _execute.make_int(a, "a")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrMin", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_min, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrMin = tf_export("raw_ops.AttrMin")(_ops.to_raw_op(attr_min))
_dispatcher_for_attr_min = attr_min._tf_type_based_dispatcher.Dispatch
def attr_min_eager_fallback(a: int, name, ctx):
a = _execute.make_int(a, "a")
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrMin", 0, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_partial_shape')
def attr_partial_shape(a, name=None):
r"""TODO: add doc.
Args:
a: A `tf.TensorShape` or list of `ints`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrPartialShape", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_partial_shape(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_partial_shape_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_partial_shape, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_partial_shape(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
a = _execute.make_shape(a, "a")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrPartialShape", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_partial_shape, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrPartialShape = tf_export("raw_ops.AttrPartialShape")(_ops.to_raw_op(attr_partial_shape))
_dispatcher_for_attr_partial_shape = attr_partial_shape._tf_type_based_dispatcher.Dispatch
def attr_partial_shape_eager_fallback(a, name, ctx):
a = _execute.make_shape(a, "a")
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrPartialShape", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_partial_shape_list')
def attr_partial_shape_list(a, name=None):
r"""TODO: add doc.
Args:
a: A list of shapes (each a `tf.TensorShape` or list of `ints`).
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrPartialShapeList", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_partial_shape_list(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_partial_shape_list_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_partial_shape_list, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_partial_shape_list(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_partial_shape_list' Op, not %r." % a)
a = [_execute.make_shape(_s, "a") for _s in a]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrPartialShapeList", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_partial_shape_list, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrPartialShapeList = tf_export("raw_ops.AttrPartialShapeList")(_ops.to_raw_op(attr_partial_shape_list))
_dispatcher_for_attr_partial_shape_list = attr_partial_shape_list._tf_type_based_dispatcher.Dispatch
def attr_partial_shape_list_eager_fallback(a, name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_partial_shape_list' Op, not %r." % a)
a = [_execute.make_shape(_s, "a") for _s in a]
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrPartialShapeList", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_shape')
def attr_shape(a, name=None):
r"""TODO: add doc.
Args:
a: A `tf.TensorShape` or list of `ints`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrShape", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_shape(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_shape_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_shape, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_shape(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
a = _execute.make_shape(a, "a")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrShape", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_shape, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrShape = tf_export("raw_ops.AttrShape")(_ops.to_raw_op(attr_shape))
_dispatcher_for_attr_shape = attr_shape._tf_type_based_dispatcher.Dispatch
def attr_shape_eager_fallback(a, name, ctx):
a = _execute.make_shape(a, "a")
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrShape", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_shape_list')
def attr_shape_list(a, name=None):
r"""TODO: add doc.
Args:
a: A list of shapes (each a `tf.TensorShape` or list of `ints`).
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrShapeList", name, "a", a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_shape_list(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_shape_list_eager_fallback(
a=a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_shape_list, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_shape_list(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_shape_list' Op, not %r." % a)
a = [_execute.make_shape(_s, "a") for _s in a]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrShapeList", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_shape_list, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrShapeList = tf_export("raw_ops.AttrShapeList")(_ops.to_raw_op(attr_shape_list))
_dispatcher_for_attr_shape_list = attr_shape_list._tf_type_based_dispatcher.Dispatch
def attr_shape_list_eager_fallback(a, name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'attr_shape_list' Op, not %r." % a)
a = [_execute.make_shape(_s, "a") for _s in a]
_inputs_flat = []
_attrs = ("a", a)
_result = _execute.execute(b"AttrShapeList", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
TV_AttrTypeDefault_T = TypeVar("TV_AttrTypeDefault_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('attr_type_default')
def attr_type_default(a: Annotated[Any, TV_AttrTypeDefault_T], name=None):
r"""TODO: add doc.
Args:
a: A `Tensor`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "AttrTypeDefault", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_attr_type_default(
(a, name,), None)
if _result is not NotImplemented:
return _result
return attr_type_default_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_type_default, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_attr_type_default(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"AttrTypeDefault", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
attr_type_default, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
AttrTypeDefault = tf_export("raw_ops.AttrTypeDefault")(_ops.to_raw_op(attr_type_default))
_dispatcher_for_attr_type_default = attr_type_default._tf_type_based_dispatcher.Dispatch
def attr_type_default_eager_fallback(a: Annotated[Any, TV_AttrTypeDefault_T], name, ctx):
_attr_T, (a,) = _execute.args_to_matching_eager([a], ctx, [], _dtypes.int32)
_inputs_flat = [a]
_attrs = ("T", _attr_T)
_result = _execute.execute(b"AttrTypeDefault", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('b')
def b(name=None) -> Annotated[Any, _atypes.Float32]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "B", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_b(
(name,), None)
if _result is not NotImplemented:
return _result
return b_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
b, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_b(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"B", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
b, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"B", _inputs_flat, _attrs, _result)
_result, = _result
return _result
B = tf_export("raw_ops.B")(_ops.to_raw_op(b))
_dispatcher_for_b = b._tf_type_based_dispatcher.Dispatch
def b_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Float32]:
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"B", 1, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"B", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TV_Binary_T = TypeVar("TV_Binary_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('binary')
def binary(a: Annotated[Any, TV_Binary_T], b: Annotated[Any, TV_Binary_T], name=None) -> Annotated[Any, TV_Binary_T]:
r"""TODO: add doc.
Args:
a: A `Tensor`.
b: A `Tensor`. Must have the same type as `a`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `a`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Binary", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_binary(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return binary_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
binary, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_binary(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Binary", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
binary, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"Binary", _inputs_flat, _attrs, _result)
_result, = _result
return _result
Binary = tf_export("raw_ops.Binary")(_ops.to_raw_op(binary))
_dispatcher_for_binary = binary._tf_type_based_dispatcher.Dispatch
def binary_eager_fallback(a: Annotated[Any, TV_Binary_T], b: Annotated[Any, TV_Binary_T], name, ctx) -> Annotated[Any, TV_Binary_T]:
_attr_T, _inputs_T = _execute.args_to_matching_eager([a, b], ctx, [])
(a, b) = _inputs_T
_inputs_flat = [a, b]
_attrs = ("T", _attr_T)
_result = _execute.execute(b"Binary", 1, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Binary", _inputs_flat, _attrs, _result)
_result, = _result
return _result
_ComplexStructOutput = collections.namedtuple(
"ComplexStruct",
["a", "b", "c"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('complex_struct')
def complex_struct(n_a: int, n_b: int, t_c, name=None):
r"""TODO: add doc.
Args:
n_a: An `int` that is `>= 0`.
n_b: An `int` that is `>= 0`.
t_c: A list of `tf.DTypes`.
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (a, b, c).
a: A list of `n_a` `Tensor` objects with type `int32`.
b: A list of `n_b` `Tensor` objects with type `int64`.
c: A list of `Tensor` objects of type `t_c`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "ComplexStruct", name, "n_a", n_a, "n_b", n_b, "t_c", t_c)
_result = _ComplexStructOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_complex_struct(
(n_a, n_b, t_c, name,), None)
if _result is not NotImplemented:
return _result
return complex_struct_eager_fallback(
n_a=n_a, n_b=n_b, t_c=t_c, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
complex_struct, (), dict(n_a=n_a, n_b=n_b, t_c=t_c, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_complex_struct(
(n_a, n_b, t_c, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
n_a = _execute.make_int(n_a, "n_a")
n_b = _execute.make_int(n_b, "n_b")
if not isinstance(t_c, (list, tuple)):
raise TypeError(
"Expected list for 't_c' argument to "
"'complex_struct' Op, not %r." % t_c)
t_c = [_execute.make_type(_t, "t_c") for _t in t_c]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"ComplexStruct", n_a=n_a, n_b=n_b, t_c=t_c, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
complex_struct, (), dict(n_a=n_a, n_b=n_b, t_c=t_c, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("n_a", _op._get_attr_int("n_a"), "n_b",
_op._get_attr_int("n_b"), "t_c", _op.get_attr("t_c"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"ComplexStruct", _inputs_flat, _attrs, _result)
_result = [_result[:n_a]] + _result[n_a:]
_result = _result[:1] + [_result[1:1 + n_b]] + _result[1 + n_b:]
_result = _result[:2] + [_result[2:]]
_result = _ComplexStructOutput._make(_result)
return _result
ComplexStruct = tf_export("raw_ops.ComplexStruct")(_ops.to_raw_op(complex_struct))
_dispatcher_for_complex_struct = complex_struct._tf_type_based_dispatcher.Dispatch
def complex_struct_eager_fallback(n_a: int, n_b: int, t_c, name, ctx):
n_a = _execute.make_int(n_a, "n_a")
n_b = _execute.make_int(n_b, "n_b")
if not isinstance(t_c, (list, tuple)):
raise TypeError(
"Expected list for 't_c' argument to "
"'complex_struct' Op, not %r." % t_c)
t_c = [_execute.make_type(_t, "t_c") for _t in t_c]
_inputs_flat = []
_attrs = ("n_a", n_a, "n_b", n_b, "t_c", t_c)
_result = _execute.execute(b"ComplexStruct", n_a + n_b + len(t_c),
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"ComplexStruct", _inputs_flat, _attrs, _result)
_result = [_result[:n_a]] + _result[n_a:]
_result = _result[:1] + [_result[1:1 + n_b]] + _result[1 + n_b:]
_result = _result[:2] + [_result[2:]]
_result = _ComplexStructOutput._make(_result)
return _result
TV_CopyOp_T = TypeVar("TV_CopyOp_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('copy_op')
def copy_op(a: Annotated[Any, TV_CopyOp_T], name=None) -> Annotated[Any, TV_CopyOp_T]:
r"""TODO: add doc.
Args:
a: A `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `a`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "CopyOp", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_copy_op(
(a, name,), None)
if _result is not NotImplemented:
return _result
return copy_op_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
copy_op, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_copy_op(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"CopyOp", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
copy_op, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"CopyOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
CopyOp = tf_export("raw_ops.CopyOp")(_ops.to_raw_op(copy_op))
_dispatcher_for_copy_op = copy_op._tf_type_based_dispatcher.Dispatch
def copy_op_eager_fallback(a: Annotated[Any, TV_CopyOp_T], name, ctx) -> Annotated[Any, TV_CopyOp_T]:
_attr_T, (a,) = _execute.args_to_matching_eager([a], ctx, [])
_inputs_flat = [a]
_attrs = ("T", _attr_T)
_result = _execute.execute(b"CopyOp", 1, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"CopyOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TV_DefaultAttrs_type_val = TypeVar("TV_DefaultAttrs_type_val", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('default_attrs')
def default_attrs(string_val:str="abc", string_list_val=["abc", ""], int_val:int=123, int_list_val=[1, 2, 3], float_val:float=10, float_list_val=[10], bool_val:bool=True, bool_list_val=[True, False], type_val:TV_DefaultAttrs_type_val=_dtypes.int32, type_list_val=[_dtypes.int32, _dtypes.float32], shape_val=[2, 1], shape_list_val=[[], [1]], tensor_val=_execute.make_tensor("""dtype: DT_INT32 tensor_shape { } int_val: 1 """, "tensor_val"), tensor_list_val=[_execute.make_tensor(_pb, "tensor_list_val") for _pb in ("""dtype: DT_INT32 tensor_shape { } int_val: 1 """,)], name=None):
r"""TODO: add doc.
Args:
string_val: An optional `string`. Defaults to `"abc"`.
string_list_val: An optional list of `strings`. Defaults to `["abc", ""]`.
int_val: An optional `int`. Defaults to `123`.
int_list_val: An optional list of `ints`. Defaults to `[1, 2, 3]`.
float_val: An optional `float`. Defaults to `10`.
float_list_val: An optional list of `floats`. Defaults to `[10]`.
bool_val: An optional `bool`. Defaults to `True`.
bool_list_val: An optional list of `bools`. Defaults to `[True, False]`.
type_val: An optional `tf.DType`. Defaults to `tf.int32`.
type_list_val: An optional list of `tf.DTypes`. Defaults to `[tf.int32, tf.float32]`.
shape_val: An optional `tf.TensorShape` or list of `ints`. Defaults to `[2, 1]`.
shape_list_val: An optional list of shapes (each a `tf.TensorShape` or list of `ints`). Defaults to `[[], [1]]`.
tensor_val: An optional `tf.TensorProto`. Defaults to `dtype: DT_INT32 tensor_shape { } int_val: 1`.
tensor_list_val: An optional list of `tf.TensorProto` objects. Defaults to `[dtype: DT_INT32 tensor_shape { } int_val: 1]`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "DefaultAttrs", name, "string_val", string_val,
"string_list_val", string_list_val, "int_val", int_val,
"int_list_val", int_list_val, "float_val", float_val,
"float_list_val", float_list_val, "bool_val", bool_val,
"bool_list_val", bool_list_val, "type_val", type_val, "type_list_val",
type_list_val, "shape_val", shape_val, "shape_list_val",
shape_list_val, "tensor_val", tensor_val, "tensor_list_val",
tensor_list_val)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_default_attrs(
(string_val, string_list_val, int_val, int_list_val, float_val,
float_list_val, bool_val, bool_list_val, type_val, type_list_val,
shape_val, shape_list_val, tensor_val, tensor_list_val, name,), None)
if _result is not NotImplemented:
return _result
return default_attrs_eager_fallback(
string_val=string_val, string_list_val=string_list_val,
int_val=int_val, int_list_val=int_list_val, float_val=float_val,
float_list_val=float_list_val, bool_val=bool_val,
bool_list_val=bool_list_val, type_val=type_val,
type_list_val=type_list_val, shape_val=shape_val,
shape_list_val=shape_list_val, tensor_val=tensor_val,
tensor_list_val=tensor_list_val, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
default_attrs, (), dict(string_val=string_val,
string_list_val=string_list_val,
int_val=int_val,
int_list_val=int_list_val,
float_val=float_val,
float_list_val=float_list_val,
bool_val=bool_val,
bool_list_val=bool_list_val,
type_val=type_val,
type_list_val=type_list_val,
shape_val=shape_val,
shape_list_val=shape_list_val,
tensor_val=tensor_val,
tensor_list_val=tensor_list_val,
name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_default_attrs(
(string_val, string_list_val, int_val, int_list_val, float_val,
float_list_val, bool_val, bool_list_val, type_val, type_list_val,
shape_val, shape_list_val, tensor_val, tensor_list_val, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if string_val is None:
string_val = "abc"
string_val = _execute.make_str(string_val, "string_val")
if string_list_val is None:
string_list_val = ["abc", ""]
if not isinstance(string_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'string_list_val' argument to "
"'default_attrs' Op, not %r." % string_list_val)
string_list_val = [_execute.make_str(_s, "string_list_val") for _s in string_list_val]
if int_val is None:
int_val = 123
int_val = _execute.make_int(int_val, "int_val")
if int_list_val is None:
int_list_val = [1, 2, 3]
if not isinstance(int_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'int_list_val' argument to "
"'default_attrs' Op, not %r." % int_list_val)
int_list_val = [_execute.make_int(_i, "int_list_val") for _i in int_list_val]
if float_val is None:
float_val = 10
float_val = _execute.make_float(float_val, "float_val")
if float_list_val is None:
float_list_val = [10]
if not isinstance(float_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'float_list_val' argument to "
"'default_attrs' Op, not %r." % float_list_val)
float_list_val = [_execute.make_float(_f, "float_list_val") for _f in float_list_val]
if bool_val is None:
bool_val = True
bool_val = _execute.make_bool(bool_val, "bool_val")
if bool_list_val is None:
bool_list_val = [True, False]
if not isinstance(bool_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'bool_list_val' argument to "
"'default_attrs' Op, not %r." % bool_list_val)
bool_list_val = [_execute.make_bool(_b, "bool_list_val") for _b in bool_list_val]
if type_val is None:
type_val = _dtypes.int32
type_val = _execute.make_type(type_val, "type_val")
if type_list_val is None:
type_list_val = [_dtypes.int32, _dtypes.float32]
if not isinstance(type_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'type_list_val' argument to "
"'default_attrs' Op, not %r." % type_list_val)
type_list_val = [_execute.make_type(_t, "type_list_val") for _t in type_list_val]
if shape_val is None:
shape_val = [2, 1]
shape_val = _execute.make_shape(shape_val, "shape_val")
if shape_list_val is None:
shape_list_val = [[], [1]]
if not isinstance(shape_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'shape_list_val' argument to "
"'default_attrs' Op, not %r." % shape_list_val)
shape_list_val = [_execute.make_shape(_s, "shape_list_val") for _s in shape_list_val]
if tensor_val is None:
tensor_val = _execute.make_tensor("""dtype: DT_INT32 tensor_shape { } int_val: 1 """, "tensor_val")
tensor_val = _execute.make_tensor(tensor_val, "tensor_val")
if tensor_list_val is None:
tensor_list_val = [_execute.make_tensor(_pb, "tensor_list_val") for _pb in ("""dtype: DT_INT32 tensor_shape { } int_val: 1 """,)]
if not isinstance(tensor_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'tensor_list_val' argument to "
"'default_attrs' Op, not %r." % tensor_list_val)
tensor_list_val = [_execute.make_tensor(_t, "tensor_list_val") for _t in tensor_list_val]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"DefaultAttrs", string_val=string_val,
string_list_val=string_list_val, int_val=int_val,
int_list_val=int_list_val, float_val=float_val,
float_list_val=float_list_val, bool_val=bool_val,
bool_list_val=bool_list_val, type_val=type_val,
type_list_val=type_list_val, shape_val=shape_val,
shape_list_val=shape_list_val, tensor_val=tensor_val,
tensor_list_val=tensor_list_val, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
default_attrs, (), dict(string_val=string_val,
string_list_val=string_list_val,
int_val=int_val, int_list_val=int_list_val,
float_val=float_val,
float_list_val=float_list_val,
bool_val=bool_val,
bool_list_val=bool_list_val,
type_val=type_val,
type_list_val=type_list_val,
shape_val=shape_val,
shape_list_val=shape_list_val,
tensor_val=tensor_val,
tensor_list_val=tensor_list_val, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
DefaultAttrs = tf_export("raw_ops.DefaultAttrs")(_ops.to_raw_op(default_attrs))
_dispatcher_for_default_attrs = default_attrs._tf_type_based_dispatcher.Dispatch
def default_attrs_eager_fallback(string_val: str, string_list_val, int_val: int, int_list_val, float_val: float, float_list_val, bool_val: bool, bool_list_val, type_val: TV_DefaultAttrs_type_val, type_list_val, shape_val, shape_list_val, tensor_val, tensor_list_val, name, ctx):
if string_val is None:
string_val = "abc"
string_val = _execute.make_str(string_val, "string_val")
if string_list_val is None:
string_list_val = ["abc", ""]
if not isinstance(string_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'string_list_val' argument to "
"'default_attrs' Op, not %r." % string_list_val)
string_list_val = [_execute.make_str(_s, "string_list_val") for _s in string_list_val]
if int_val is None:
int_val = 123
int_val = _execute.make_int(int_val, "int_val")
if int_list_val is None:
int_list_val = [1, 2, 3]
if not isinstance(int_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'int_list_val' argument to "
"'default_attrs' Op, not %r." % int_list_val)
int_list_val = [_execute.make_int(_i, "int_list_val") for _i in int_list_val]
if float_val is None:
float_val = 10
float_val = _execute.make_float(float_val, "float_val")
if float_list_val is None:
float_list_val = [10]
if not isinstance(float_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'float_list_val' argument to "
"'default_attrs' Op, not %r." % float_list_val)
float_list_val = [_execute.make_float(_f, "float_list_val") for _f in float_list_val]
if bool_val is None:
bool_val = True
bool_val = _execute.make_bool(bool_val, "bool_val")
if bool_list_val is None:
bool_list_val = [True, False]
if not isinstance(bool_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'bool_list_val' argument to "
"'default_attrs' Op, not %r." % bool_list_val)
bool_list_val = [_execute.make_bool(_b, "bool_list_val") for _b in bool_list_val]
if type_val is None:
type_val = _dtypes.int32
type_val = _execute.make_type(type_val, "type_val")
if type_list_val is None:
type_list_val = [_dtypes.int32, _dtypes.float32]
if not isinstance(type_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'type_list_val' argument to "
"'default_attrs' Op, not %r." % type_list_val)
type_list_val = [_execute.make_type(_t, "type_list_val") for _t in type_list_val]
if shape_val is None:
shape_val = [2, 1]
shape_val = _execute.make_shape(shape_val, "shape_val")
if shape_list_val is None:
shape_list_val = [[], [1]]
if not isinstance(shape_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'shape_list_val' argument to "
"'default_attrs' Op, not %r." % shape_list_val)
shape_list_val = [_execute.make_shape(_s, "shape_list_val") for _s in shape_list_val]
if tensor_val is None:
tensor_val = _execute.make_tensor("""dtype: DT_INT32 tensor_shape { } int_val: 1 """, "tensor_val")
tensor_val = _execute.make_tensor(tensor_val, "tensor_val")
if tensor_list_val is None:
tensor_list_val = [_execute.make_tensor(_pb, "tensor_list_val") for _pb in ("""dtype: DT_INT32 tensor_shape { } int_val: 1 """,)]
if not isinstance(tensor_list_val, (list, tuple)):
raise TypeError(
"Expected list for 'tensor_list_val' argument to "
"'default_attrs' Op, not %r." % tensor_list_val)
tensor_list_val = [_execute.make_tensor(_t, "tensor_list_val") for _t in tensor_list_val]
_inputs_flat = []
_attrs = ("string_val", string_val, "string_list_val", string_list_val,
"int_val", int_val, "int_list_val", int_list_val, "float_val", float_val,
"float_list_val", float_list_val, "bool_val", bool_val, "bool_list_val",
bool_list_val, "type_val", type_val, "type_list_val", type_list_val,
"shape_val", shape_val, "shape_list_val", shape_list_val, "tensor_val",
tensor_val, "tensor_list_val", tensor_list_val)
_result = _execute.execute(b"DefaultAttrs", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('device_placement_op')
def device_placement_op(name=None) -> Annotated[Any, _atypes.String]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type `string`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "DevicePlacementOp", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_device_placement_op(
(name,), None)
if _result is not NotImplemented:
return _result
return device_placement_op_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
device_placement_op, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_device_placement_op(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"DevicePlacementOp", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
device_placement_op, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"DevicePlacementOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
DevicePlacementOp = tf_export("raw_ops.DevicePlacementOp")(_ops.to_raw_op(device_placement_op))
_dispatcher_for_device_placement_op = device_placement_op._tf_type_based_dispatcher.Dispatch
def device_placement_op_eager_fallback(name, ctx) -> Annotated[Any, _atypes.String]:
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"DevicePlacementOp", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"DevicePlacementOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TV_DtypeWithDefaultOp_T = TypeVar("TV_DtypeWithDefaultOp_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('dtype_with_default_op')
def dtype_with_default_op(in_: Annotated[Any, TV_DtypeWithDefaultOp_T], name=None) -> Annotated[Any, _atypes.String]:
r"""TODO: add doc.
Args:
in_: A `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `string`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "DtypeWithDefaultOp", name, in_)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_dtype_with_default_op(
(in_, name,), None)
if _result is not NotImplemented:
return _result
return dtype_with_default_op_eager_fallback(
in_, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
dtype_with_default_op, (), dict(in_=in_, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_dtype_with_default_op(
(in_, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"DtypeWithDefaultOp", in_=in_, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
dtype_with_default_op, (), dict(in_=in_, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"DtypeWithDefaultOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
DtypeWithDefaultOp = tf_export("raw_ops.DtypeWithDefaultOp")(_ops.to_raw_op(dtype_with_default_op))
_dispatcher_for_dtype_with_default_op = dtype_with_default_op._tf_type_based_dispatcher.Dispatch
def dtype_with_default_op_eager_fallback(in_: Annotated[Any, TV_DtypeWithDefaultOp_T], name, ctx) -> Annotated[Any, _atypes.String]:
_attr_T, (in_,) = _execute.args_to_matching_eager([in_], ctx, [], _dtypes.uint8)
_inputs_flat = [in_]
_attrs = ("T", _attr_T)
_result = _execute.execute(b"DtypeWithDefaultOp", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"DtypeWithDefaultOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
_FiveFloatOutputsOutput = collections.namedtuple(
"FiveFloatOutputs",
["a", "b", "c", "d", "e"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('five_float_outputs')
def five_float_outputs(name=None):
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (a, b, c, d, e).
a: A `Tensor` of type `float32`.
b: A `Tensor` of type `float32`.
c: A `Tensor` of type `float32`.
d: A `Tensor` of type `float32`.
e: A `Tensor` of type `float32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "FiveFloatOutputs", name)
_result = _FiveFloatOutputsOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_five_float_outputs(
(name,), None)
if _result is not NotImplemented:
return _result
return five_float_outputs_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
five_float_outputs, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_five_float_outputs(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"FiveFloatOutputs", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
five_float_outputs, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"FiveFloatOutputs", _inputs_flat, _attrs, _result)
_result = _FiveFloatOutputsOutput._make(_result)
return _result
FiveFloatOutputs = tf_export("raw_ops.FiveFloatOutputs")(_ops.to_raw_op(five_float_outputs))
_dispatcher_for_five_float_outputs = five_float_outputs._tf_type_based_dispatcher.Dispatch
def five_float_outputs_eager_fallback(name, ctx):
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"FiveFloatOutputs", 5, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"FiveFloatOutputs", _inputs_flat, _attrs, _result)
_result = _FiveFloatOutputsOutput._make(_result)
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('float_input')
def float_input(a: Annotated[Any, _atypes.Float32], name=None):
r"""TODO: add doc.
Args:
a: A `Tensor` of type `float32`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "FloatInput", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_float_input(
(a, name,), None)
if _result is not NotImplemented:
return _result
return float_input_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
float_input, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_float_input(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"FloatInput", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
float_input, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
FloatInput = tf_export("raw_ops.FloatInput")(_ops.to_raw_op(float_input))
_dispatcher_for_float_input = float_input._tf_type_based_dispatcher.Dispatch
def float_input_eager_fallback(a: Annotated[Any, _atypes.Float32], name, ctx):
a = _ops.convert_to_tensor(a, _dtypes.float32)
_inputs_flat = [a]
_attrs = None
_result = _execute.execute(b"FloatInput", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('float_output')
def float_output(name=None) -> Annotated[Any, _atypes.Float32]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "FloatOutput", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_float_output(
(name,), None)
if _result is not NotImplemented:
return _result
return float_output_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
float_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_float_output(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"FloatOutput", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
float_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"FloatOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
FloatOutput = tf_export("raw_ops.FloatOutput")(_ops.to_raw_op(float_output))
_dispatcher_for_float_output = float_output._tf_type_based_dispatcher.Dispatch
def float_output_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Float32]:
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"FloatOutput", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"FloatOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
_FloatOutputStringOutputOutput = collections.namedtuple(
"FloatOutputStringOutput",
["a", "b"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('float_output_string_output')
def float_output_string_output(name=None):
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (a, b).
a: A `Tensor` of type `float32`.
b: A `Tensor` of type `string`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "FloatOutputStringOutput", name)
_result = _FloatOutputStringOutputOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_float_output_string_output(
(name,), None)
if _result is not NotImplemented:
return _result
return float_output_string_output_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
float_output_string_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_float_output_string_output(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"FloatOutputStringOutput", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
float_output_string_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"FloatOutputStringOutput", _inputs_flat, _attrs, _result)
_result = _FloatOutputStringOutputOutput._make(_result)
return _result
FloatOutputStringOutput = tf_export("raw_ops.FloatOutputStringOutput")(_ops.to_raw_op(float_output_string_output))
_dispatcher_for_float_output_string_output = float_output_string_output._tf_type_based_dispatcher.Dispatch
def float_output_string_output_eager_fallback(name, ctx):
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"FloatOutputStringOutput", 2,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"FloatOutputStringOutput", _inputs_flat, _attrs, _result)
_result = _FloatOutputStringOutputOutput._make(_result)
return _result
_Foo1Output = collections.namedtuple(
"Foo1",
["d", "e"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('foo1')
def foo1(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Int32], c: Annotated[Any, _atypes.Int32], name=None):
r"""TODO: add doc.
Args:
a: A `Tensor` of type `float32`.
b: A `Tensor` of type `int32`.
c: A `Tensor` of type `int32`.
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (d, e).
d: A `Tensor` of type `float32`.
e: A `Tensor` of type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Foo1", name, a, b, c)
_result = _Foo1Output._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_foo1(
(a, b, c, name,), None)
if _result is not NotImplemented:
return _result
return foo1_eager_fallback(
a, b, c, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
foo1, (), dict(a=a, b=b, c=c, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_foo1(
(a, b, c, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Foo1", a=a, b=b, c=c, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
foo1, (), dict(a=a, b=b, c=c, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"Foo1", _inputs_flat, _attrs, _result)
_result = _Foo1Output._make(_result)
return _result
Foo1 = tf_export("raw_ops.Foo1")(_ops.to_raw_op(foo1))
_dispatcher_for_foo1 = foo1._tf_type_based_dispatcher.Dispatch
def foo1_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Int32], c: Annotated[Any, _atypes.Int32], name, ctx):
a = _ops.convert_to_tensor(a, _dtypes.float32)
b = _ops.convert_to_tensor(b, _dtypes.int32)
c = _ops.convert_to_tensor(c, _dtypes.int32)
_inputs_flat = [a, b, c]
_attrs = None
_result = _execute.execute(b"Foo1", 2, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Foo1", _inputs_flat, _attrs, _result)
_result = _Foo1Output._make(_result)
return _result
_Foo2Output = collections.namedtuple(
"Foo2",
["d", "e"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('foo2')
def foo2(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.String], c: Annotated[Any, _atypes.String], name=None):
r"""TODO: add doc.
Args:
a: A `Tensor` of type `float32`.
b: A `Tensor` of type `string`.
c: A `Tensor` of type `string`.
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (d, e).
d: A `Tensor` of type `float32`.
e: A `Tensor` of type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Foo2", name, a, b, c)
_result = _Foo2Output._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_foo2(
(a, b, c, name,), None)
if _result is not NotImplemented:
return _result
return foo2_eager_fallback(
a, b, c, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
foo2, (), dict(a=a, b=b, c=c, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_foo2(
(a, b, c, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Foo2", a=a, b=b, c=c, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
foo2, (), dict(a=a, b=b, c=c, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"Foo2", _inputs_flat, _attrs, _result)
_result = _Foo2Output._make(_result)
return _result
Foo2 = tf_export("raw_ops.Foo2")(_ops.to_raw_op(foo2))
_dispatcher_for_foo2 = foo2._tf_type_based_dispatcher.Dispatch
def foo2_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.String], c: Annotated[Any, _atypes.String], name, ctx):
a = _ops.convert_to_tensor(a, _dtypes.float32)
b = _ops.convert_to_tensor(b, _dtypes.string)
c = _ops.convert_to_tensor(c, _dtypes.string)
_inputs_flat = [a, b, c]
_attrs = None
_result = _execute.execute(b"Foo2", 2, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Foo2", _inputs_flat, _attrs, _result)
_result = _Foo2Output._make(_result)
return _result
_Foo3Output = collections.namedtuple(
"Foo3",
["d", "e"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('foo3')
def foo3(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.String], c: Annotated[Any, _atypes.Float32], name=None):
r"""TODO: add doc.
Args:
a: A `Tensor` of type `float32`.
b: A `Tensor` of type `string`.
c: A `Tensor` of type `float32`.
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (d, e).
d: A `Tensor` of type `float32`.
e: A `Tensor` of type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Foo3", name, a, b, c)
_result = _Foo3Output._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_foo3(
(a, b, c, name,), None)
if _result is not NotImplemented:
return _result
return foo3_eager_fallback(
a, b, c, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
foo3, (), dict(a=a, b=b, c=c, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_foo3(
(a, b, c, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Foo3", a=a, b=b, c=c, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
foo3, (), dict(a=a, b=b, c=c, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"Foo3", _inputs_flat, _attrs, _result)
_result = _Foo3Output._make(_result)
return _result
Foo3 = tf_export("raw_ops.Foo3")(_ops.to_raw_op(foo3))
_dispatcher_for_foo3 = foo3._tf_type_based_dispatcher.Dispatch
def foo3_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.String], c: Annotated[Any, _atypes.Float32], name, ctx):
a = _ops.convert_to_tensor(a, _dtypes.float32)
b = _ops.convert_to_tensor(b, _dtypes.string)
c = _ops.convert_to_tensor(c, _dtypes.float32)
_inputs_flat = [a, b, c]
_attrs = None
_result = _execute.execute(b"Foo3", 2, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Foo3", _inputs_flat, _attrs, _result)
_result = _Foo3Output._make(_result)
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('func_attr')
def func_attr(f, name=None):
r"""TODO: add doc.
Args:
f: A function decorated with @Defun.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "FuncAttr", name, "f", f)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_func_attr(
(f, name,), None)
if _result is not NotImplemented:
return _result
return func_attr_eager_fallback(
f=f, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
func_attr, (), dict(f=f, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_func_attr(
(f, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"FuncAttr", f=f, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
func_attr, (), dict(f=f, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
FuncAttr = tf_export("raw_ops.FuncAttr")(_ops.to_raw_op(func_attr))
_dispatcher_for_func_attr = func_attr._tf_type_based_dispatcher.Dispatch
def func_attr_eager_fallback(f, name, ctx):
_inputs_flat = []
_attrs = ("f", f)
_result = _execute.execute(b"FuncAttr", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('func_list_attr')
def func_list_attr(f, name=None):
r"""TODO: add doc.
Args:
f: A list of functions decorated with @Defun.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "FuncListAttr", name, "f", f)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_func_list_attr(
(f, name,), None)
if _result is not NotImplemented:
return _result
return func_list_attr_eager_fallback(
f=f, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
func_list_attr, (), dict(f=f, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_func_list_attr(
(f, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(f, (list, tuple)):
raise TypeError(
"Expected list for 'f' argument to "
"'func_list_attr' Op, not %r." % f)
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"FuncListAttr", f=f, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
func_list_attr, (), dict(f=f, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
FuncListAttr = tf_export("raw_ops.FuncListAttr")(_ops.to_raw_op(func_list_attr))
_dispatcher_for_func_list_attr = func_list_attr._tf_type_based_dispatcher.Dispatch
def func_list_attr_eager_fallback(f, name, ctx):
if not isinstance(f, (list, tuple)):
raise TypeError(
"Expected list for 'f' argument to "
"'func_list_attr' Op, not %r." % f)
_inputs_flat = []
_attrs = ("f", f)
_result = _execute.execute(b"FuncListAttr", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('get_deadline')
def get_deadline(name=None) -> Annotated[Any, _atypes.Int64]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type `int64`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "GetDeadline", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_get_deadline(
(name,), None)
if _result is not NotImplemented:
return _result
return get_deadline_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
get_deadline, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_get_deadline(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"GetDeadline", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
get_deadline, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"GetDeadline", _inputs_flat, _attrs, _result)
_result, = _result
return _result
GetDeadline = tf_export("raw_ops.GetDeadline")(_ops.to_raw_op(get_deadline))
_dispatcher_for_get_deadline = get_deadline._tf_type_based_dispatcher.Dispatch
def get_deadline_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int64]:
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"GetDeadline", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"GetDeadline", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('graph_def_version')
def graph_def_version(name=None) -> Annotated[Any, _atypes.Int32]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "GraphDefVersion", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_graph_def_version(
(name,), None)
if _result is not NotImplemented:
return _result
return graph_def_version_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
graph_def_version, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_graph_def_version(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"GraphDefVersion", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
graph_def_version, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"GraphDefVersion", _inputs_flat, _attrs, _result)
_result, = _result
return _result
GraphDefVersion = tf_export("raw_ops.GraphDefVersion")(_ops.to_raw_op(graph_def_version))
_dispatcher_for_graph_def_version = graph_def_version._tf_type_based_dispatcher.Dispatch
def graph_def_version_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int32]:
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"GraphDefVersion", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"GraphDefVersion", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TV_InPolymorphicTwice_T = TypeVar("TV_InPolymorphicTwice_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('in_polymorphic_twice')
def in_polymorphic_twice(a: Annotated[List[Any], TV_InPolymorphicTwice_T], b: Annotated[List[Any], TV_InPolymorphicTwice_T], name=None):
r"""TODO: add doc.
Args:
a: A list of `Tensor` objects with the same type.
b: A list of `Tensor` objects with the same type as `a`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "InPolymorphicTwice", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_in_polymorphic_twice(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return in_polymorphic_twice_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
in_polymorphic_twice, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_in_polymorphic_twice(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'in_polymorphic_twice' Op, not %r." % a)
_attr_N = len(a)
if not isinstance(b, (list, tuple)):
raise TypeError(
"Expected list for 'b' argument to "
"'in_polymorphic_twice' Op, not %r." % b)
_attr_M = len(b)
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"InPolymorphicTwice", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
in_polymorphic_twice, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
InPolymorphicTwice = tf_export("raw_ops.InPolymorphicTwice")(_ops.to_raw_op(in_polymorphic_twice))
_dispatcher_for_in_polymorphic_twice = in_polymorphic_twice._tf_type_based_dispatcher.Dispatch
def in_polymorphic_twice_eager_fallback(a: Annotated[List[Any], TV_InPolymorphicTwice_T], b: Annotated[List[Any], TV_InPolymorphicTwice_T], name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'in_polymorphic_twice' Op, not %r." % a)
_attr_N = len(a)
if not isinstance(b, (list, tuple)):
raise TypeError(
"Expected list for 'b' argument to "
"'in_polymorphic_twice' Op, not %r." % b)
_attr_M = len(b)
_attr_T, _inputs_T = _execute.args_to_matching_eager(list(a) + list(b), ctx, [], _dtypes.int32)
_inputs_T = [_inputs_T[:_attr_N]] + _inputs_T[_attr_N:]
_inputs_T = _inputs_T[:1] + [_inputs_T[1:]]
(a, b) = _inputs_T
_inputs_flat = list(a) + list(b)
_attrs = ("T", _attr_T, "N", _attr_N, "M", _attr_M)
_result = _execute.execute(b"InPolymorphicTwice", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('int64_output')
def int64_output(name=None) -> Annotated[Any, _atypes.Int64]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type `int64`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Int64Output", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_int64_output(
(name,), None)
if _result is not NotImplemented:
return _result
return int64_output_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int64_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_int64_output(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Int64Output", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int64_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"Int64Output", _inputs_flat, _attrs, _result)
_result, = _result
return _result
Int64Output = tf_export("raw_ops.Int64Output")(_ops.to_raw_op(int64_output))
_dispatcher_for_int64_output = int64_output._tf_type_based_dispatcher.Dispatch
def int64_output_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int64]:
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"Int64Output", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Int64Output", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('int_attr')
def int_attr(foo:int=1, name=None) -> Annotated[Any, _atypes.Int64]:
r"""TODO: add doc.
Args:
foo: An optional `int`. Defaults to `1`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `int64`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "IntAttr", name, "foo", foo)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_int_attr(
(foo, name,), None)
if _result is not NotImplemented:
return _result
return int_attr_eager_fallback(
foo=foo, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_attr, (), dict(foo=foo, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_int_attr(
(foo, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if foo is None:
foo = 1
foo = _execute.make_int(foo, "foo")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"IntAttr", foo=foo, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_attr, (), dict(foo=foo, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("foo", _op._get_attr_int("foo"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"IntAttr", _inputs_flat, _attrs, _result)
_result, = _result
return _result
IntAttr = tf_export("raw_ops.IntAttr")(_ops.to_raw_op(int_attr))
_dispatcher_for_int_attr = int_attr._tf_type_based_dispatcher.Dispatch
def int_attr_eager_fallback(foo: int, name, ctx) -> Annotated[Any, _atypes.Int64]:
if foo is None:
foo = 1
foo = _execute.make_int(foo, "foo")
_inputs_flat = []
_attrs = ("foo", foo)
_result = _execute.execute(b"IntAttr", 1, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"IntAttr", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('int_input')
def int_input(a: Annotated[Any, _atypes.Int32], name=None):
r"""TODO: add doc.
Args:
a: A `Tensor` of type `int32`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "IntInput", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_int_input(
(a, name,), None)
if _result is not NotImplemented:
return _result
return int_input_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_input, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_int_input(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"IntInput", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_input, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
IntInput = tf_export("raw_ops.IntInput")(_ops.to_raw_op(int_input))
_dispatcher_for_int_input = int_input._tf_type_based_dispatcher.Dispatch
def int_input_eager_fallback(a: Annotated[Any, _atypes.Int32], name, ctx):
a = _ops.convert_to_tensor(a, _dtypes.int32)
_inputs_flat = [a]
_attrs = None
_result = _execute.execute(b"IntInput", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('int_input_float_input')
def int_input_float_input(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Float32], name=None):
r"""TODO: add doc.
Args:
a: A `Tensor` of type `int32`.
b: A `Tensor` of type `float32`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "IntInputFloatInput", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_int_input_float_input(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return int_input_float_input_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_input_float_input, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_int_input_float_input(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"IntInputFloatInput", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_input_float_input, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
IntInputFloatInput = tf_export("raw_ops.IntInputFloatInput")(_ops.to_raw_op(int_input_float_input))
_dispatcher_for_int_input_float_input = int_input_float_input._tf_type_based_dispatcher.Dispatch
def int_input_float_input_eager_fallback(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Float32], name, ctx):
a = _ops.convert_to_tensor(a, _dtypes.int32)
b = _ops.convert_to_tensor(b, _dtypes.float32)
_inputs_flat = [a, b]
_attrs = None
_result = _execute.execute(b"IntInputFloatInput", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('int_input_int_output')
def int_input_int_output(a: Annotated[Any, _atypes.Int32], name=None) -> Annotated[Any, _atypes.Int32]:
r"""TODO: add doc.
Args:
a: A `Tensor` of type `int32`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "IntInputIntOutput", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_int_input_int_output(
(a, name,), None)
if _result is not NotImplemented:
return _result
return int_input_int_output_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_input_int_output, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_int_input_int_output(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"IntInputIntOutput", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_input_int_output, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"IntInputIntOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
IntInputIntOutput = tf_export("raw_ops.IntInputIntOutput")(_ops.to_raw_op(int_input_int_output))
_dispatcher_for_int_input_int_output = int_input_int_output._tf_type_based_dispatcher.Dispatch
def int_input_int_output_eager_fallback(a: Annotated[Any, _atypes.Int32], name, ctx) -> Annotated[Any, _atypes.Int32]:
a = _ops.convert_to_tensor(a, _dtypes.int32)
_inputs_flat = [a]
_attrs = None
_result = _execute.execute(b"IntInputIntOutput", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"IntInputIntOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('int_output')
def int_output(name=None) -> Annotated[Any, _atypes.Int32]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "IntOutput", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_int_output(
(name,), None)
if _result is not NotImplemented:
return _result
return int_output_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_int_output(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"IntOutput", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"IntOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
IntOutput = tf_export("raw_ops.IntOutput")(_ops.to_raw_op(int_output))
_dispatcher_for_int_output = int_output._tf_type_based_dispatcher.Dispatch
def int_output_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int32]:
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"IntOutput", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"IntOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
_IntOutputFloatOutputOutput = collections.namedtuple(
"IntOutputFloatOutput",
["a", "b"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('int_output_float_output')
def int_output_float_output(name=None):
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (a, b).
a: A `Tensor` of type `int32`.
b: A `Tensor` of type `float32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "IntOutputFloatOutput", name)
_result = _IntOutputFloatOutputOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_int_output_float_output(
(name,), None)
if _result is not NotImplemented:
return _result
return int_output_float_output_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_output_float_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_int_output_float_output(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"IntOutputFloatOutput", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
int_output_float_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"IntOutputFloatOutput", _inputs_flat, _attrs, _result)
_result = _IntOutputFloatOutputOutput._make(_result)
return _result
IntOutputFloatOutput = tf_export("raw_ops.IntOutputFloatOutput")(_ops.to_raw_op(int_output_float_output))
_dispatcher_for_int_output_float_output = int_output_float_output._tf_type_based_dispatcher.Dispatch
def int_output_float_output_eager_fallback(name, ctx):
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"IntOutputFloatOutput", 2, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"IntOutputFloatOutput", _inputs_flat, _attrs, _result)
_result = _IntOutputFloatOutputOutput._make(_result)
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('is_resource_handle_ref_counting')
def is_resource_handle_ref_counting(handle: Annotated[Any, _atypes.Resource], name=None) -> Annotated[Any, _atypes.Bool]:
r"""TODO: add doc.
Args:
handle: A `Tensor` of type `resource`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `bool`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "IsResourceHandleRefCounting", name, handle)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_is_resource_handle_ref_counting(
(handle, name,), None)
if _result is not NotImplemented:
return _result
return is_resource_handle_ref_counting_eager_fallback(
handle, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
is_resource_handle_ref_counting, (), dict(handle=handle,
name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_is_resource_handle_ref_counting(
(handle, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"IsResourceHandleRefCounting", handle=handle, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
is_resource_handle_ref_counting, (), dict(handle=handle, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"IsResourceHandleRefCounting", _inputs_flat, _attrs, _result)
_result, = _result
return _result
IsResourceHandleRefCounting = tf_export("raw_ops.IsResourceHandleRefCounting")(_ops.to_raw_op(is_resource_handle_ref_counting))
_dispatcher_for_is_resource_handle_ref_counting = is_resource_handle_ref_counting._tf_type_based_dispatcher.Dispatch
def is_resource_handle_ref_counting_eager_fallback(handle: Annotated[Any, _atypes.Resource], name, ctx) -> Annotated[Any, _atypes.Bool]:
handle = _ops.convert_to_tensor(handle, _dtypes.resource)
_inputs_flat = [handle]
_attrs = None
_result = _execute.execute(b"IsResourceHandleRefCounting", 1,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"IsResourceHandleRefCounting", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('is_tensor_float32_enabled')
def is_tensor_float32_enabled(name=None) -> Annotated[Any, _atypes.Bool]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type `bool`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "IsTensorFloat32Enabled", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_is_tensor_float32_enabled(
(name,), None)
if _result is not NotImplemented:
return _result
return is_tensor_float32_enabled_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
is_tensor_float32_enabled, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_is_tensor_float32_enabled(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"IsTensorFloat32Enabled", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
is_tensor_float32_enabled, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"IsTensorFloat32Enabled", _inputs_flat, _attrs, _result)
_result, = _result
return _result
IsTensorFloat32Enabled = tf_export("raw_ops.IsTensorFloat32Enabled")(_ops.to_raw_op(is_tensor_float32_enabled))
_dispatcher_for_is_tensor_float32_enabled = is_tensor_float32_enabled._tf_type_based_dispatcher.Dispatch
def is_tensor_float32_enabled_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Bool]:
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"IsTensorFloat32Enabled", 1,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"IsTensorFloat32Enabled", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('kernel_label')
def kernel_label(name=None) -> Annotated[Any, _atypes.String]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type `string`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "KernelLabel", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_kernel_label(
(name,), None)
if _result is not NotImplemented:
return _result
return kernel_label_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
kernel_label, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_kernel_label(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"KernelLabel", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
kernel_label, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"KernelLabel", _inputs_flat, _attrs, _result)
_result, = _result
return _result
KernelLabel = tf_export("raw_ops.KernelLabel")(_ops.to_raw_op(kernel_label))
_dispatcher_for_kernel_label = kernel_label._tf_type_based_dispatcher.Dispatch
def kernel_label_eager_fallback(name, ctx) -> Annotated[Any, _atypes.String]:
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"KernelLabel", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"KernelLabel", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('kernel_label_required')
def kernel_label_required(input: Annotated[Any, _atypes.Int32], name=None) -> Annotated[Any, _atypes.String]:
r"""TODO: add doc.
Args:
input: A `Tensor` of type `int32`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `string`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "KernelLabelRequired", name, input)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_kernel_label_required(
(input, name,), None)
if _result is not NotImplemented:
return _result
return kernel_label_required_eager_fallback(
input, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
kernel_label_required, (), dict(input=input, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_kernel_label_required(
(input, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"KernelLabelRequired", input=input, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
kernel_label_required, (), dict(input=input, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"KernelLabelRequired", _inputs_flat, _attrs, _result)
_result, = _result
return _result
KernelLabelRequired = tf_export("raw_ops.KernelLabelRequired")(_ops.to_raw_op(kernel_label_required))
_dispatcher_for_kernel_label_required = kernel_label_required._tf_type_based_dispatcher.Dispatch
def kernel_label_required_eager_fallback(input: Annotated[Any, _atypes.Int32], name, ctx) -> Annotated[Any, _atypes.String]:
input = _ops.convert_to_tensor(input, _dtypes.int32)
_inputs_flat = [input]
_attrs = None
_result = _execute.execute(b"KernelLabelRequired", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"KernelLabelRequired", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TV_ListInput_T = TypeVar("TV_ListInput_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('list_input')
def list_input(a: Annotated[List[Any], TV_ListInput_T], name=None):
r"""TODO: add doc.
Args:
a: A list of at least 1 `Tensor` objects with the same type.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "ListInput", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_list_input(
(a, name,), None)
if _result is not NotImplemented:
return _result
return list_input_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
list_input, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_list_input(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'list_input' Op, not %r." % a)
_attr_N = len(a)
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"ListInput", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
list_input, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
ListInput = tf_export("raw_ops.ListInput")(_ops.to_raw_op(list_input))
_dispatcher_for_list_input = list_input._tf_type_based_dispatcher.Dispatch
def list_input_eager_fallback(a: Annotated[List[Any], TV_ListInput_T], name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'list_input' Op, not %r." % a)
_attr_N = len(a)
_attr_T, a = _execute.args_to_matching_eager(list(a), ctx, [])
_inputs_flat = list(a)
_attrs = ("N", _attr_N, "T", _attr_T)
_result = _execute.execute(b"ListInput", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('list_output')
def list_output(T, name=None):
r"""TODO: add doc.
Args:
T: A list of `tf.DTypes` that has length `>= 1`.
name: A name for the operation (optional).
Returns:
A list of `Tensor` objects of type `T`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "ListOutput", name, "T", T)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_list_output(
(T, name,), None)
if _result is not NotImplemented:
return _result
return list_output_eager_fallback(
T=T, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
list_output, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_list_output(
(T, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(T, (list, tuple)):
raise TypeError(
"Expected list for 'T' argument to "
"'list_output' Op, not %r." % T)
T = [_execute.make_type(_t, "T") for _t in T]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"ListOutput", T=T, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
list_output, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op.get_attr("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"ListOutput", _inputs_flat, _attrs, _result)
return _result
ListOutput = tf_export("raw_ops.ListOutput")(_ops.to_raw_op(list_output))
_dispatcher_for_list_output = list_output._tf_type_based_dispatcher.Dispatch
def list_output_eager_fallback(T, name, ctx):
if not isinstance(T, (list, tuple)):
raise TypeError(
"Expected list for 'T' argument to "
"'list_output' Op, not %r." % T)
T = [_execute.make_type(_t, "T") for _t in T]
_inputs_flat = []
_attrs = ("T", T)
_result = _execute.execute(b"ListOutput", len(T), inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"ListOutput", _inputs_flat, _attrs, _result)
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('make_weak_resource_handle')
def make_weak_resource_handle(handle: Annotated[Any, _atypes.Resource], name=None) -> Annotated[Any, _atypes.Resource]:
r"""TODO: add doc.
Args:
handle: A `Tensor` of type `resource`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `resource`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "MakeWeakResourceHandle", name, handle)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_make_weak_resource_handle(
(handle, name,), None)
if _result is not NotImplemented:
return _result
return make_weak_resource_handle_eager_fallback(
handle, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
make_weak_resource_handle, (), dict(handle=handle, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_make_weak_resource_handle(
(handle, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"MakeWeakResourceHandle", handle=handle, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
make_weak_resource_handle, (), dict(handle=handle, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"MakeWeakResourceHandle", _inputs_flat, _attrs, _result)
_result, = _result
return _result
MakeWeakResourceHandle = tf_export("raw_ops.MakeWeakResourceHandle")(_ops.to_raw_op(make_weak_resource_handle))
_dispatcher_for_make_weak_resource_handle = make_weak_resource_handle._tf_type_based_dispatcher.Dispatch
def make_weak_resource_handle_eager_fallback(handle: Annotated[Any, _atypes.Resource], name, ctx) -> Annotated[Any, _atypes.Resource]:
handle = _ops.convert_to_tensor(handle, _dtypes.resource)
_inputs_flat = [handle]
_attrs = None
_result = _execute.execute(b"MakeWeakResourceHandle", 1,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"MakeWeakResourceHandle", _inputs_flat, _attrs, _result)
_result, = _result
return _result
_MixedStructOutput = collections.namedtuple(
"MixedStruct",
["a", "b"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('mixed_struct')
def mixed_struct(n_a: int, name=None):
r"""TODO: add doc.
Args:
n_a: An `int` that is `>= 0`.
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (a, b).
a: A list of `n_a` `Tensor` objects with type `int32`.
b: A `Tensor` of type `float32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "MixedStruct", name, "n_a", n_a)
_result = _MixedStructOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_mixed_struct(
(n_a, name,), None)
if _result is not NotImplemented:
return _result
return mixed_struct_eager_fallback(
n_a=n_a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
mixed_struct, (), dict(n_a=n_a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_mixed_struct(
(n_a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
n_a = _execute.make_int(n_a, "n_a")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"MixedStruct", n_a=n_a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
mixed_struct, (), dict(n_a=n_a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("n_a", _op._get_attr_int("n_a"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"MixedStruct", _inputs_flat, _attrs, _result)
_result = [_result[:n_a]] + _result[n_a:]
_result = _MixedStructOutput._make(_result)
return _result
MixedStruct = tf_export("raw_ops.MixedStruct")(_ops.to_raw_op(mixed_struct))
_dispatcher_for_mixed_struct = mixed_struct._tf_type_based_dispatcher.Dispatch
def mixed_struct_eager_fallback(n_a: int, name, ctx):
n_a = _execute.make_int(n_a, "n_a")
_inputs_flat = []
_attrs = ("n_a", n_a)
_result = _execute.execute(b"MixedStruct", n_a + 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"MixedStruct", _inputs_flat, _attrs, _result)
_result = [_result[:n_a]] + _result[n_a:]
_result = _MixedStructOutput._make(_result)
return _result
TV_NInPolymorphicTwice_T = TypeVar("TV_NInPolymorphicTwice_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('n_in_polymorphic_twice')
def n_in_polymorphic_twice(a: Annotated[List[Any], TV_NInPolymorphicTwice_T], b: Annotated[List[Any], TV_NInPolymorphicTwice_T], name=None):
r"""TODO: add doc.
Args:
a: A list of `Tensor` objects with the same type.
b: A list with the same length as `a` of `Tensor` objects with the same type as `a`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "NInPolymorphicTwice", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_n_in_polymorphic_twice(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return n_in_polymorphic_twice_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_in_polymorphic_twice, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_n_in_polymorphic_twice(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_in_polymorphic_twice' Op, not %r." % a)
_attr_N = len(a)
if not isinstance(b, (list, tuple)):
raise TypeError(
"Expected list for 'b' argument to "
"'n_in_polymorphic_twice' Op, not %r." % b)
if len(b) != _attr_N:
raise ValueError(
"List argument 'b' to 'n_in_polymorphic_twice' Op with length %d "
"must match length %d of argument 'a'." %
(len(b), _attr_N))
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"NInPolymorphicTwice", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_in_polymorphic_twice, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
NInPolymorphicTwice = tf_export("raw_ops.NInPolymorphicTwice")(_ops.to_raw_op(n_in_polymorphic_twice))
_dispatcher_for_n_in_polymorphic_twice = n_in_polymorphic_twice._tf_type_based_dispatcher.Dispatch
def n_in_polymorphic_twice_eager_fallback(a: Annotated[List[Any], TV_NInPolymorphicTwice_T], b: Annotated[List[Any], TV_NInPolymorphicTwice_T], name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_in_polymorphic_twice' Op, not %r." % a)
_attr_N = len(a)
if not isinstance(b, (list, tuple)):
raise TypeError(
"Expected list for 'b' argument to "
"'n_in_polymorphic_twice' Op, not %r." % b)
if len(b) != _attr_N:
raise ValueError(
"List argument 'b' to 'n_in_polymorphic_twice' Op with length %d "
"must match length %d of argument 'a'." %
(len(b), _attr_N))
_attr_T, _inputs_T = _execute.args_to_matching_eager(list(a) + list(b), ctx, [])
_inputs_T = [_inputs_T[:_attr_N]] + _inputs_T[_attr_N:]
_inputs_T = _inputs_T[:1] + [_inputs_T[1:]]
(a, b) = _inputs_T
_inputs_flat = list(a) + list(b)
_attrs = ("T", _attr_T, "N", _attr_N)
_result = _execute.execute(b"NInPolymorphicTwice", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('n_in_twice')
def n_in_twice(a: Annotated[List[Any], _atypes.Int32], b: Annotated[List[Any], _atypes.String], name=None):
r"""TODO: add doc.
Args:
a: A list of `Tensor` objects with type `int32`.
b: A list with the same length as `a` of `Tensor` objects with type `string`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "NInTwice", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_n_in_twice(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return n_in_twice_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_in_twice, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_n_in_twice(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_in_twice' Op, not %r." % a)
_attr_N = len(a)
if not isinstance(b, (list, tuple)):
raise TypeError(
"Expected list for 'b' argument to "
"'n_in_twice' Op, not %r." % b)
if len(b) != _attr_N:
raise ValueError(
"List argument 'b' to 'n_in_twice' Op with length %d "
"must match length %d of argument 'a'." %
(len(b), _attr_N))
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"NInTwice", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_in_twice, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
NInTwice = tf_export("raw_ops.NInTwice")(_ops.to_raw_op(n_in_twice))
_dispatcher_for_n_in_twice = n_in_twice._tf_type_based_dispatcher.Dispatch
def n_in_twice_eager_fallback(a: Annotated[List[Any], _atypes.Int32], b: Annotated[List[Any], _atypes.String], name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_in_twice' Op, not %r." % a)
_attr_N = len(a)
if not isinstance(b, (list, tuple)):
raise TypeError(
"Expected list for 'b' argument to "
"'n_in_twice' Op, not %r." % b)
if len(b) != _attr_N:
raise ValueError(
"List argument 'b' to 'n_in_twice' Op with length %d "
"must match length %d of argument 'a'." %
(len(b), _attr_N))
a = _ops.convert_n_to_tensor(a, _dtypes.int32)
b = _ops.convert_n_to_tensor(b, _dtypes.string)
_inputs_flat = list(a) + list(b)
_attrs = ("N", _attr_N)
_result = _execute.execute(b"NInTwice", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
TV_NInTwoTypeVariables_S = TypeVar("TV_NInTwoTypeVariables_S", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
TV_NInTwoTypeVariables_T = TypeVar("TV_NInTwoTypeVariables_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('n_in_two_type_variables')
def n_in_two_type_variables(a: Annotated[List[Any], TV_NInTwoTypeVariables_S], b: Annotated[List[Any], TV_NInTwoTypeVariables_T], name=None):
r"""TODO: add doc.
Args:
a: A list of `Tensor` objects with the same type.
b: A list with the same length as `a` of `Tensor` objects with the same type.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "NInTwoTypeVariables", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_n_in_two_type_variables(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return n_in_two_type_variables_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_in_two_type_variables, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_n_in_two_type_variables(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_in_two_type_variables' Op, not %r." % a)
_attr_N = len(a)
if not isinstance(b, (list, tuple)):
raise TypeError(
"Expected list for 'b' argument to "
"'n_in_two_type_variables' Op, not %r." % b)
if len(b) != _attr_N:
raise ValueError(
"List argument 'b' to 'n_in_two_type_variables' Op with length %d "
"must match length %d of argument 'a'." %
(len(b), _attr_N))
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"NInTwoTypeVariables", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_in_two_type_variables, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
NInTwoTypeVariables = tf_export("raw_ops.NInTwoTypeVariables")(_ops.to_raw_op(n_in_two_type_variables))
_dispatcher_for_n_in_two_type_variables = n_in_two_type_variables._tf_type_based_dispatcher.Dispatch
def n_in_two_type_variables_eager_fallback(a: Annotated[List[Any], TV_NInTwoTypeVariables_S], b: Annotated[List[Any], TV_NInTwoTypeVariables_T], name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_in_two_type_variables' Op, not %r." % a)
_attr_N = len(a)
if not isinstance(b, (list, tuple)):
raise TypeError(
"Expected list for 'b' argument to "
"'n_in_two_type_variables' Op, not %r." % b)
if len(b) != _attr_N:
raise ValueError(
"List argument 'b' to 'n_in_two_type_variables' Op with length %d "
"must match length %d of argument 'a'." %
(len(b), _attr_N))
_attr_S, a = _execute.args_to_matching_eager(list(a), ctx, [])
_attr_T, b = _execute.args_to_matching_eager(list(b), ctx, [])
_inputs_flat = list(a) + list(b)
_attrs = ("S", _attr_S, "T", _attr_T, "N", _attr_N)
_result = _execute.execute(b"NInTwoTypeVariables", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('n_ints_in')
def n_ints_in(a: Annotated[List[Any], _atypes.Int32], name=None):
r"""TODO: add doc.
Args:
a: A list of at least 2 `Tensor` objects with type `int32`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "NIntsIn", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_n_ints_in(
(a, name,), None)
if _result is not NotImplemented:
return _result
return n_ints_in_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_ints_in, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_n_ints_in(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_ints_in' Op, not %r." % a)
_attr_N = len(a)
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"NIntsIn", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_ints_in, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
NIntsIn = tf_export("raw_ops.NIntsIn")(_ops.to_raw_op(n_ints_in))
_dispatcher_for_n_ints_in = n_ints_in._tf_type_based_dispatcher.Dispatch
def n_ints_in_eager_fallback(a: Annotated[List[Any], _atypes.Int32], name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_ints_in' Op, not %r." % a)
_attr_N = len(a)
a = _ops.convert_n_to_tensor(a, _dtypes.int32)
_inputs_flat = list(a)
_attrs = ("N", _attr_N)
_result = _execute.execute(b"NIntsIn", 0, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('n_ints_out')
def n_ints_out(N: int, name=None):
r"""TODO: add doc.
Args:
N: An `int` that is `>= 2`.
name: A name for the operation (optional).
Returns:
A list of `N` `Tensor` objects with type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "NIntsOut", name, "N", N)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_n_ints_out(
(N, name,), None)
if _result is not NotImplemented:
return _result
return n_ints_out_eager_fallback(
N=N, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_ints_out, (), dict(N=N, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_n_ints_out(
(N, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
N = _execute.make_int(N, "N")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"NIntsOut", N=N, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_ints_out, (), dict(N=N, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("N", _op._get_attr_int("N"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"NIntsOut", _inputs_flat, _attrs, _result)
return _result
NIntsOut = tf_export("raw_ops.NIntsOut")(_ops.to_raw_op(n_ints_out))
_dispatcher_for_n_ints_out = n_ints_out._tf_type_based_dispatcher.Dispatch
def n_ints_out_eager_fallback(N: int, name, ctx):
N = _execute.make_int(N, "N")
_inputs_flat = []
_attrs = ("N", N)
_result = _execute.execute(b"NIntsOut", N, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"NIntsOut", _inputs_flat, _attrs, _result)
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('n_ints_out_default')
def n_ints_out_default(N:int=3, name=None):
r"""TODO: add doc.
Args:
N: An optional `int` that is `>= 2`. Defaults to `3`.
name: A name for the operation (optional).
Returns:
A list of `N` `Tensor` objects with type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "NIntsOutDefault", name, "N", N)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_n_ints_out_default(
(N, name,), None)
if _result is not NotImplemented:
return _result
return n_ints_out_default_eager_fallback(
N=N, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_ints_out_default, (), dict(N=N, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_n_ints_out_default(
(N, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if N is None:
N = 3
N = _execute.make_int(N, "N")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"NIntsOutDefault", N=N, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_ints_out_default, (), dict(N=N, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("N", _op._get_attr_int("N"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"NIntsOutDefault", _inputs_flat, _attrs, _result)
return _result
NIntsOutDefault = tf_export("raw_ops.NIntsOutDefault")(_ops.to_raw_op(n_ints_out_default))
_dispatcher_for_n_ints_out_default = n_ints_out_default._tf_type_based_dispatcher.Dispatch
def n_ints_out_default_eager_fallback(N: int, name, ctx):
if N is None:
N = 3
N = _execute.make_int(N, "N")
_inputs_flat = []
_attrs = ("N", N)
_result = _execute.execute(b"NIntsOutDefault", N, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"NIntsOutDefault", _inputs_flat, _attrs, _result)
return _result
TV_NPolymorphicIn_T = TypeVar("TV_NPolymorphicIn_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('n_polymorphic_in')
def n_polymorphic_in(a: Annotated[List[Any], TV_NPolymorphicIn_T], name=None):
r"""TODO: add doc.
Args:
a: A list of at least 2 `Tensor` objects with the same type.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "NPolymorphicIn", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_n_polymorphic_in(
(a, name,), None)
if _result is not NotImplemented:
return _result
return n_polymorphic_in_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_polymorphic_in, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_n_polymorphic_in(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_polymorphic_in' Op, not %r." % a)
_attr_N = len(a)
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"NPolymorphicIn", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_polymorphic_in, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
NPolymorphicIn = tf_export("raw_ops.NPolymorphicIn")(_ops.to_raw_op(n_polymorphic_in))
_dispatcher_for_n_polymorphic_in = n_polymorphic_in._tf_type_based_dispatcher.Dispatch
def n_polymorphic_in_eager_fallback(a: Annotated[List[Any], TV_NPolymorphicIn_T], name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_polymorphic_in' Op, not %r." % a)
_attr_N = len(a)
_attr_T, a = _execute.args_to_matching_eager(list(a), ctx, [])
_inputs_flat = list(a)
_attrs = ("T", _attr_T, "N", _attr_N)
_result = _execute.execute(b"NPolymorphicIn", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
TV_NPolymorphicOut_T = TypeVar("TV_NPolymorphicOut_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('n_polymorphic_out')
def n_polymorphic_out(T: TV_NPolymorphicOut_T, N: int, name=None):
r"""TODO: add doc.
Args:
T: A `tf.DType`.
N: An `int` that is `>= 2`.
name: A name for the operation (optional).
Returns:
A list of `N` `Tensor` objects with type `T`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "NPolymorphicOut", name, "T", T, "N", N)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_n_polymorphic_out(
(T, N, name,), None)
if _result is not NotImplemented:
return _result
return n_polymorphic_out_eager_fallback(
T=T, N=N, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_polymorphic_out, (), dict(T=T, N=N, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_n_polymorphic_out(
(T, N, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
T = _execute.make_type(T, "T")
N = _execute.make_int(N, "N")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"NPolymorphicOut", T=T, N=N, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_polymorphic_out, (), dict(T=T, N=N, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"), "N", _op._get_attr_int("N"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"NPolymorphicOut", _inputs_flat, _attrs, _result)
return _result
NPolymorphicOut = tf_export("raw_ops.NPolymorphicOut")(_ops.to_raw_op(n_polymorphic_out))
_dispatcher_for_n_polymorphic_out = n_polymorphic_out._tf_type_based_dispatcher.Dispatch
def n_polymorphic_out_eager_fallback(T: TV_NPolymorphicOut_T, N: int, name, ctx):
T = _execute.make_type(T, "T")
N = _execute.make_int(N, "N")
_inputs_flat = []
_attrs = ("T", T, "N", N)
_result = _execute.execute(b"NPolymorphicOut", N, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"NPolymorphicOut", _inputs_flat, _attrs, _result)
return _result
TV_NPolymorphicOutDefault_T = TypeVar("TV_NPolymorphicOutDefault_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('n_polymorphic_out_default')
def n_polymorphic_out_default(T:TV_NPolymorphicOutDefault_T=_dtypes.bool, N:int=2, name=None):
r"""TODO: add doc.
Args:
T: An optional `tf.DType`. Defaults to `tf.bool`.
N: An optional `int` that is `>= 2`. Defaults to `2`.
name: A name for the operation (optional).
Returns:
A list of `N` `Tensor` objects with type `T`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "NPolymorphicOutDefault", name, "T", T, "N", N)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_n_polymorphic_out_default(
(T, N, name,), None)
if _result is not NotImplemented:
return _result
return n_polymorphic_out_default_eager_fallback(
T=T, N=N, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_polymorphic_out_default, (), dict(T=T, N=N, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_n_polymorphic_out_default(
(T, N, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if T is None:
T = _dtypes.bool
T = _execute.make_type(T, "T")
if N is None:
N = 2
N = _execute.make_int(N, "N")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"NPolymorphicOutDefault", T=T, N=N, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_polymorphic_out_default, (), dict(T=T, N=N, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"), "N", _op._get_attr_int("N"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"NPolymorphicOutDefault", _inputs_flat, _attrs, _result)
return _result
NPolymorphicOutDefault = tf_export("raw_ops.NPolymorphicOutDefault")(_ops.to_raw_op(n_polymorphic_out_default))
_dispatcher_for_n_polymorphic_out_default = n_polymorphic_out_default._tf_type_based_dispatcher.Dispatch
def n_polymorphic_out_default_eager_fallback(T: TV_NPolymorphicOutDefault_T, N: int, name, ctx):
if T is None:
T = _dtypes.bool
T = _execute.make_type(T, "T")
if N is None:
N = 2
N = _execute.make_int(N, "N")
_inputs_flat = []
_attrs = ("T", T, "N", N)
_result = _execute.execute(b"NPolymorphicOutDefault", N,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"NPolymorphicOutDefault", _inputs_flat, _attrs, _result)
return _result
TV_NPolymorphicRestrictIn_T = TypeVar("TV_NPolymorphicRestrictIn_T", _atypes.Bool, _atypes.String)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('n_polymorphic_restrict_in')
def n_polymorphic_restrict_in(a: Annotated[List[Any], TV_NPolymorphicRestrictIn_T], name=None):
r"""TODO: add doc.
Args:
a: A list of at least 2 `Tensor` objects with the same type in: `string`, `bool`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "NPolymorphicRestrictIn", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_n_polymorphic_restrict_in(
(a, name,), None)
if _result is not NotImplemented:
return _result
return n_polymorphic_restrict_in_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_polymorphic_restrict_in, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_n_polymorphic_restrict_in(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_polymorphic_restrict_in' Op, not %r." % a)
_attr_N = len(a)
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"NPolymorphicRestrictIn", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_polymorphic_restrict_in, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
NPolymorphicRestrictIn = tf_export("raw_ops.NPolymorphicRestrictIn")(_ops.to_raw_op(n_polymorphic_restrict_in))
_dispatcher_for_n_polymorphic_restrict_in = n_polymorphic_restrict_in._tf_type_based_dispatcher.Dispatch
def n_polymorphic_restrict_in_eager_fallback(a: Annotated[List[Any], TV_NPolymorphicRestrictIn_T], name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'n_polymorphic_restrict_in' Op, not %r." % a)
_attr_N = len(a)
_attr_T, a = _execute.args_to_matching_eager(list(a), ctx, [_dtypes.string, _dtypes.bool, ])
_inputs_flat = list(a)
_attrs = ("T", _attr_T, "N", _attr_N)
_result = _execute.execute(b"NPolymorphicRestrictIn", 0,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
_result = None
return _result
TV_NPolymorphicRestrictOut_T = TypeVar("TV_NPolymorphicRestrictOut_T", _atypes.Bool, _atypes.String)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('n_polymorphic_restrict_out')
def n_polymorphic_restrict_out(T: TV_NPolymorphicRestrictOut_T, N: int, name=None):
r"""TODO: add doc.
Args:
T: A `tf.DType` from: `tf.string, tf.bool`.
N: An `int` that is `>= 2`.
name: A name for the operation (optional).
Returns:
A list of `N` `Tensor` objects with type `T`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "NPolymorphicRestrictOut", name, "T", T, "N", N)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_n_polymorphic_restrict_out(
(T, N, name,), None)
if _result is not NotImplemented:
return _result
return n_polymorphic_restrict_out_eager_fallback(
T=T, N=N, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_polymorphic_restrict_out, (), dict(T=T, N=N, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_n_polymorphic_restrict_out(
(T, N, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
T = _execute.make_type(T, "T")
N = _execute.make_int(N, "N")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"NPolymorphicRestrictOut", T=T, N=N, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
n_polymorphic_restrict_out, (), dict(T=T, N=N, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"), "N", _op._get_attr_int("N"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"NPolymorphicRestrictOut", _inputs_flat, _attrs, _result)
return _result
NPolymorphicRestrictOut = tf_export("raw_ops.NPolymorphicRestrictOut")(_ops.to_raw_op(n_polymorphic_restrict_out))
_dispatcher_for_n_polymorphic_restrict_out = n_polymorphic_restrict_out._tf_type_based_dispatcher.Dispatch
def n_polymorphic_restrict_out_eager_fallback(T: TV_NPolymorphicRestrictOut_T, N: int, name, ctx):
T = _execute.make_type(T, "T")
N = _execute.make_int(N, "N")
_inputs_flat = []
_attrs = ("T", T, "N", N)
_result = _execute.execute(b"NPolymorphicRestrictOut", N,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"NPolymorphicRestrictOut", _inputs_flat, _attrs, _result)
return _result
_Namespace_TestStringOutputOutput = collections.namedtuple(
"Namespace_TestStringOutput",
["output1", "output2"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('namespace_test_string_output')
def namespace_test_string_output(input: Annotated[Any, _atypes.Float32], name=None):
r"""TODO: add doc.
Args:
input: A `Tensor` of type `float32`.
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (output1, output2).
output1: A `Tensor` of type `float32`.
output2: A `Tensor` of type `string`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Namespace>TestStringOutput", name, input)
_result = _Namespace_TestStringOutputOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_namespace_test_string_output(
(input, name,), None)
if _result is not NotImplemented:
return _result
return namespace_test_string_output_eager_fallback(
input, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
namespace_test_string_output, (), dict(input=input, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_namespace_test_string_output(
(input, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Namespace>TestStringOutput", input=input, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
namespace_test_string_output, (), dict(input=input, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"Namespace>TestStringOutput", _inputs_flat, _attrs, _result)
_result = _Namespace_TestStringOutputOutput._make(_result)
return _result
Namespace_TestStringOutput = tf_export("raw_ops.Namespace_TestStringOutput")(_ops.to_raw_op(namespace_test_string_output))
_dispatcher_for_namespace_test_string_output = namespace_test_string_output._tf_type_based_dispatcher.Dispatch
def namespace_test_string_output_eager_fallback(input: Annotated[Any, _atypes.Float32], name, ctx):
input = _ops.convert_to_tensor(input, _dtypes.float32)
_inputs_flat = [input]
_attrs = None
_result = _execute.execute(b"Namespace>TestStringOutput", 2,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Namespace>TestStringOutput", _inputs_flat, _attrs, _result)
_result = _Namespace_TestStringOutputOutput._make(_result)
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('none')
def none(name=None):
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "None", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_none(
(name,), None)
if _result is not NotImplemented:
return _result
return none_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
none, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_none(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"None", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
none, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
None_ = tf_export("raw_ops.None_")(_ops.to_raw_op(none))
_dispatcher_for_none = none._tf_type_based_dispatcher.Dispatch
def none_eager_fallback(name, ctx):
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"None", 0, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('old')
def old(name=None):
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Old", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_old(
(name,), None)
if _result is not NotImplemented:
return _result
return old_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
old, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_old(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Old", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
old, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
Old = tf_export("raw_ops.Old")(_ops.to_raw_op(old))
_dispatcher_for_old = old._tf_type_based_dispatcher.Dispatch
def old_eager_fallback(name, ctx):
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"Old", 0, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('op_with_default_attr')
def op_with_default_attr(default_float:float=123, name=None) -> Annotated[Any, _atypes.Int32]:
r"""TODO: add doc.
Args:
default_float: An optional `float`. Defaults to `123`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "OpWithDefaultAttr", name, "default_float", default_float)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_op_with_default_attr(
(default_float, name,), None)
if _result is not NotImplemented:
return _result
return op_with_default_attr_eager_fallback(
default_float=default_float, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
op_with_default_attr, (), dict(default_float=default_float,
name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_op_with_default_attr(
(default_float, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if default_float is None:
default_float = 123
default_float = _execute.make_float(default_float, "default_float")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"OpWithDefaultAttr", default_float=default_float, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
op_with_default_attr, (), dict(default_float=default_float,
name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("default_float", _op.get_attr("default_float"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"OpWithDefaultAttr", _inputs_flat, _attrs, _result)
_result, = _result
return _result
OpWithDefaultAttr = tf_export("raw_ops.OpWithDefaultAttr")(_ops.to_raw_op(op_with_default_attr))
_dispatcher_for_op_with_default_attr = op_with_default_attr._tf_type_based_dispatcher.Dispatch
def op_with_default_attr_eager_fallback(default_float: float, name, ctx) -> Annotated[Any, _atypes.Int32]:
if default_float is None:
default_float = 123
default_float = _execute.make_float(default_float, "default_float")
_inputs_flat = []
_attrs = ("default_float", default_float)
_result = _execute.execute(b"OpWithDefaultAttr", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"OpWithDefaultAttr", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('op_with_future_default_attr')
def op_with_future_default_attr(name=None):
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "OpWithFutureDefaultAttr", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_op_with_future_default_attr(
(name,), None)
if _result is not NotImplemented:
return _result
return op_with_future_default_attr_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
op_with_future_default_attr, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_op_with_future_default_attr(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"OpWithFutureDefaultAttr", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
op_with_future_default_attr, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
OpWithFutureDefaultAttr = tf_export("raw_ops.OpWithFutureDefaultAttr")(_ops.to_raw_op(op_with_future_default_attr))
_dispatcher_for_op_with_future_default_attr = op_with_future_default_attr._tf_type_based_dispatcher.Dispatch
def op_with_future_default_attr_eager_fallback(name, ctx):
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"OpWithFutureDefaultAttr", 0,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
_result = None
return _result
TV_OutT_T = TypeVar("TV_OutT_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('out_t')
def out_t(T: TV_OutT_T, name=None) -> Annotated[Any, TV_OutT_T]:
r"""TODO: add doc.
Args:
T: A `tf.DType`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `T`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "OutT", name, "T", T)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_out_t(
(T, name,), None)
if _result is not NotImplemented:
return _result
return out_t_eager_fallback(
T=T, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
out_t, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_out_t(
(T, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
T = _execute.make_type(T, "T")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"OutT", T=T, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
out_t, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"OutT", _inputs_flat, _attrs, _result)
_result, = _result
return _result
OutT = tf_export("raw_ops.OutT")(_ops.to_raw_op(out_t))
_dispatcher_for_out_t = out_t._tf_type_based_dispatcher.Dispatch
def out_t_eager_fallback(T: TV_OutT_T, name, ctx) -> Annotated[Any, TV_OutT_T]:
T = _execute.make_type(T, "T")
_inputs_flat = []
_attrs = ("T", T)
_result = _execute.execute(b"OutT", 1, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"OutT", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('out_type_list')
def out_type_list(T, name=None):
r"""TODO: add doc.
Args:
T: A list of `tf.DTypes`.
name: A name for the operation (optional).
Returns:
A list of `Tensor` objects of type `T`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "OutTypeList", name, "T", T)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_out_type_list(
(T, name,), None)
if _result is not NotImplemented:
return _result
return out_type_list_eager_fallback(
T=T, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
out_type_list, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_out_type_list(
(T, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(T, (list, tuple)):
raise TypeError(
"Expected list for 'T' argument to "
"'out_type_list' Op, not %r." % T)
T = [_execute.make_type(_t, "T") for _t in T]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"OutTypeList", T=T, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
out_type_list, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op.get_attr("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"OutTypeList", _inputs_flat, _attrs, _result)
return _result
OutTypeList = tf_export("raw_ops.OutTypeList")(_ops.to_raw_op(out_type_list))
_dispatcher_for_out_type_list = out_type_list._tf_type_based_dispatcher.Dispatch
def out_type_list_eager_fallback(T, name, ctx):
if not isinstance(T, (list, tuple)):
raise TypeError(
"Expected list for 'T' argument to "
"'out_type_list' Op, not %r." % T)
T = [_execute.make_type(_t, "T") for _t in T]
_inputs_flat = []
_attrs = ("T", T)
_result = _execute.execute(b"OutTypeList", len(T), inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"OutTypeList", _inputs_flat, _attrs, _result)
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('out_type_list_restrict')
def out_type_list_restrict(t, name=None):
r"""TODO: add doc.
Args:
t: A list of `tf.DTypes` from: `tf.string, tf.bool` that has length `>= 1`.
name: A name for the operation (optional).
Returns:
A list of `Tensor` objects of type `t`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "OutTypeListRestrict", name, "t", t)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_out_type_list_restrict(
(t, name,), None)
if _result is not NotImplemented:
return _result
return out_type_list_restrict_eager_fallback(
t=t, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
out_type_list_restrict, (), dict(t=t, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_out_type_list_restrict(
(t, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(t, (list, tuple)):
raise TypeError(
"Expected list for 't' argument to "
"'out_type_list_restrict' Op, not %r." % t)
t = [_execute.make_type(_t, "t") for _t in t]
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"OutTypeListRestrict", t=t, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
out_type_list_restrict, (), dict(t=t, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("t", _op.get_attr("t"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"OutTypeListRestrict", _inputs_flat, _attrs, _result)
return _result
OutTypeListRestrict = tf_export("raw_ops.OutTypeListRestrict")(_ops.to_raw_op(out_type_list_restrict))
_dispatcher_for_out_type_list_restrict = out_type_list_restrict._tf_type_based_dispatcher.Dispatch
def out_type_list_restrict_eager_fallback(t, name, ctx):
if not isinstance(t, (list, tuple)):
raise TypeError(
"Expected list for 't' argument to "
"'out_type_list_restrict' Op, not %r." % t)
t = [_execute.make_type(_t, "t") for _t in t]
_inputs_flat = []
_attrs = ("t", t)
_result = _execute.execute(b"OutTypeListRestrict", len(t),
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"OutTypeListRestrict", _inputs_flat, _attrs, _result)
return _result
TV_Polymorphic_T = TypeVar("TV_Polymorphic_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('polymorphic')
def polymorphic(a: Annotated[Any, TV_Polymorphic_T], name=None) -> Annotated[Any, TV_Polymorphic_T]:
r"""TODO: add doc.
Args:
a: A `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `a`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Polymorphic", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_polymorphic(
(a, name,), None)
if _result is not NotImplemented:
return _result
return polymorphic_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
polymorphic, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_polymorphic(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Polymorphic", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
polymorphic, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"Polymorphic", _inputs_flat, _attrs, _result)
_result, = _result
return _result
Polymorphic = tf_export("raw_ops.Polymorphic")(_ops.to_raw_op(polymorphic))
_dispatcher_for_polymorphic = polymorphic._tf_type_based_dispatcher.Dispatch
def polymorphic_eager_fallback(a: Annotated[Any, TV_Polymorphic_T], name, ctx) -> Annotated[Any, TV_Polymorphic_T]:
_attr_T, (a,) = _execute.args_to_matching_eager([a], ctx, [])
_inputs_flat = [a]
_attrs = ("T", _attr_T)
_result = _execute.execute(b"Polymorphic", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Polymorphic", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TV_PolymorphicDefaultOut_T = TypeVar("TV_PolymorphicDefaultOut_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('polymorphic_default_out')
def polymorphic_default_out(T:TV_PolymorphicDefaultOut_T=_dtypes.string, name=None) -> Annotated[Any, TV_PolymorphicDefaultOut_T]:
r"""TODO: add doc.
Args:
T: An optional `tf.DType`. Defaults to `tf.string`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `T`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "PolymorphicDefaultOut", name, "T", T)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_polymorphic_default_out(
(T, name,), None)
if _result is not NotImplemented:
return _result
return polymorphic_default_out_eager_fallback(
T=T, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
polymorphic_default_out, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_polymorphic_default_out(
(T, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if T is None:
T = _dtypes.string
T = _execute.make_type(T, "T")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"PolymorphicDefaultOut", T=T, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
polymorphic_default_out, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"PolymorphicDefaultOut", _inputs_flat, _attrs, _result)
_result, = _result
return _result
PolymorphicDefaultOut = tf_export("raw_ops.PolymorphicDefaultOut")(_ops.to_raw_op(polymorphic_default_out))
_dispatcher_for_polymorphic_default_out = polymorphic_default_out._tf_type_based_dispatcher.Dispatch
def polymorphic_default_out_eager_fallback(T: TV_PolymorphicDefaultOut_T, name, ctx) -> Annotated[Any, TV_PolymorphicDefaultOut_T]:
if T is None:
T = _dtypes.string
T = _execute.make_type(T, "T")
_inputs_flat = []
_attrs = ("T", T)
_result = _execute.execute(b"PolymorphicDefaultOut", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"PolymorphicDefaultOut", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TV_PolymorphicOut_T = TypeVar("TV_PolymorphicOut_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('polymorphic_out')
def polymorphic_out(T: TV_PolymorphicOut_T, name=None) -> Annotated[Any, TV_PolymorphicOut_T]:
r"""TODO: add doc.
Args:
T: A `tf.DType`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `T`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "PolymorphicOut", name, "T", T)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_polymorphic_out(
(T, name,), None)
if _result is not NotImplemented:
return _result
return polymorphic_out_eager_fallback(
T=T, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
polymorphic_out, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_polymorphic_out(
(T, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
T = _execute.make_type(T, "T")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"PolymorphicOut", T=T, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
polymorphic_out, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"PolymorphicOut", _inputs_flat, _attrs, _result)
_result, = _result
return _result
PolymorphicOut = tf_export("raw_ops.PolymorphicOut")(_ops.to_raw_op(polymorphic_out))
_dispatcher_for_polymorphic_out = polymorphic_out._tf_type_based_dispatcher.Dispatch
def polymorphic_out_eager_fallback(T: TV_PolymorphicOut_T, name, ctx) -> Annotated[Any, TV_PolymorphicOut_T]:
T = _execute.make_type(T, "T")
_inputs_flat = []
_attrs = ("T", T)
_result = _execute.execute(b"PolymorphicOut", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"PolymorphicOut", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TV_RefIn_T = TypeVar("TV_RefIn_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('ref_in')
def ref_in(a: Annotated[Any, TV_RefIn_T], name=None):
r"""TODO: add doc.
Args:
a: A mutable `Tensor`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
raise RuntimeError("ref_in op does not support eager execution. Arg 'a' is a ref.")
else:
_result = _dispatcher_for_ref_in(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"RefIn", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
ref_in, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
RefIn = tf_export("raw_ops.RefIn")(_ops.to_raw_op(ref_in))
_dispatcher_for_ref_in = ref_in._tf_type_based_dispatcher.Dispatch
def ref_in_eager_fallback(a: Annotated[Any, TV_RefIn_T], name, ctx):
raise RuntimeError("ref_in op does not support eager execution. Arg 'a' is a ref.")
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('ref_input_float_input')
def ref_input_float_input(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name=None):
r"""TODO: add doc.
Args:
a: A `Tensor` of type mutable `float32`.
b: A `Tensor` of type `float32`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
raise RuntimeError("ref_input_float_input op does not support eager execution. Arg 'a' is a ref.")
else:
_result = _dispatcher_for_ref_input_float_input(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"RefInputFloatInput", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
ref_input_float_input, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
RefInputFloatInput = tf_export("raw_ops.RefInputFloatInput")(_ops.to_raw_op(ref_input_float_input))
_dispatcher_for_ref_input_float_input = ref_input_float_input._tf_type_based_dispatcher.Dispatch
def ref_input_float_input_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name, ctx):
raise RuntimeError("ref_input_float_input op does not support eager execution. Arg 'a' is a ref.")
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('ref_input_float_input_int_output')
def ref_input_float_input_int_output(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, _atypes.Int32]:
r"""TODO: add doc.
Args:
a: A `Tensor` of type mutable `float32`.
b: A `Tensor` of type `float32`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
raise RuntimeError("ref_input_float_input_int_output op does not support eager execution. Arg 'a' is a ref.")
else:
_result = _dispatcher_for_ref_input_float_input_int_output(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"RefInputFloatInputIntOutput", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
ref_input_float_input_int_output, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"RefInputFloatInputIntOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
RefInputFloatInputIntOutput = tf_export("raw_ops.RefInputFloatInputIntOutput")(_ops.to_raw_op(ref_input_float_input_int_output))
_dispatcher_for_ref_input_float_input_int_output = ref_input_float_input_int_output._tf_type_based_dispatcher.Dispatch
def ref_input_float_input_int_output_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, _atypes.Int32]:
raise RuntimeError("ref_input_float_input_int_output op does not support eager execution. Arg 'a' is a ref.")
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('ref_input_int_input')
def ref_input_int_input(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Int32], name=None):
r"""TODO: add doc.
Args:
a: A `Tensor` of type mutable `int32`.
b: A `Tensor` of type `int32`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
raise RuntimeError("ref_input_int_input op does not support eager execution. Arg 'a' is a ref.")
else:
_result = _dispatcher_for_ref_input_int_input(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"RefInputIntInput", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
ref_input_int_input, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
RefInputIntInput = tf_export("raw_ops.RefInputIntInput")(_ops.to_raw_op(ref_input_int_input))
_dispatcher_for_ref_input_int_input = ref_input_int_input._tf_type_based_dispatcher.Dispatch
def ref_input_int_input_eager_fallback(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Int32], name, ctx):
raise RuntimeError("ref_input_int_input op does not support eager execution. Arg 'a' is a ref.")
TV_RefOut_T = TypeVar("TV_RefOut_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('ref_out')
def ref_out(T: TV_RefOut_T, name=None) -> Annotated[Any, TV_RefOut_T]:
r"""TODO: add doc.
Args:
T: A `tf.DType`.
name: A name for the operation (optional).
Returns:
A mutable `Tensor` of type `T`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
raise RuntimeError("ref_out op does not support eager execution. Arg 'a' is a ref.")
else:
_result = _dispatcher_for_ref_out(
(T, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
T = _execute.make_type(T, "T")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"RefOut", T=T, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
ref_out, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"RefOut", _inputs_flat, _attrs, _result)
_result, = _result
return _result
RefOut = tf_export("raw_ops.RefOut")(_ops.to_raw_op(ref_out))
_dispatcher_for_ref_out = ref_out._tf_type_based_dispatcher.Dispatch
def ref_out_eager_fallback(T: TV_RefOut_T, name, ctx) -> Annotated[Any, TV_RefOut_T]:
raise RuntimeError("ref_out op does not support eager execution. Arg 'a' is a ref.")
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('ref_output')
def ref_output(name=None) -> Annotated[Any, _atypes.Int32]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type mutable `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
raise RuntimeError("ref_output op does not support eager execution. Arg 'a' is a ref.")
else:
_result = _dispatcher_for_ref_output(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"RefOutput", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
ref_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"RefOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
RefOutput = tf_export("raw_ops.RefOutput")(_ops.to_raw_op(ref_output))
_dispatcher_for_ref_output = ref_output._tf_type_based_dispatcher.Dispatch
def ref_output_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int32]:
raise RuntimeError("ref_output op does not support eager execution. Arg 'a' is a ref.")
_RefOutputFloatOutputOutput = collections.namedtuple(
"RefOutputFloatOutput",
["a", "b"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('ref_output_float_output')
def ref_output_float_output(name=None):
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (a, b).
a: A `Tensor` of type mutable `float32`.
b: A `Tensor` of type `float32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
raise RuntimeError("ref_output_float_output op does not support eager execution. Arg 'a' is a ref.")
else:
_result = _dispatcher_for_ref_output_float_output(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"RefOutputFloatOutput", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
ref_output_float_output, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"RefOutputFloatOutput", _inputs_flat, _attrs, _result)
_result = _RefOutputFloatOutputOutput._make(_result)
return _result
RefOutputFloatOutput = tf_export("raw_ops.RefOutputFloatOutput")(_ops.to_raw_op(ref_output_float_output))
_dispatcher_for_ref_output_float_output = ref_output_float_output._tf_type_based_dispatcher.Dispatch
def ref_output_float_output_eager_fallback(name, ctx):
raise RuntimeError("ref_output_float_output op does not support eager execution. Arg 'a' is a ref.")
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('requires_older_graph_version')
def requires_older_graph_version(name=None) -> Annotated[Any, _atypes.Int32]:
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A `Tensor` of type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "RequiresOlderGraphVersion", name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_requires_older_graph_version(
(name,), None)
if _result is not NotImplemented:
return _result
return requires_older_graph_version_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
requires_older_graph_version, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_requires_older_graph_version(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"RequiresOlderGraphVersion", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
requires_older_graph_version, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"RequiresOlderGraphVersion", _inputs_flat, _attrs, _result)
_result, = _result
return _result
RequiresOlderGraphVersion = tf_export("raw_ops.RequiresOlderGraphVersion")(_ops.to_raw_op(requires_older_graph_version))
_dispatcher_for_requires_older_graph_version = requires_older_graph_version._tf_type_based_dispatcher.Dispatch
def requires_older_graph_version_eager_fallback(name, ctx) -> Annotated[Any, _atypes.Int32]:
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"RequiresOlderGraphVersion", 1,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"RequiresOlderGraphVersion", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('reserved_attr')
def reserved_attr(range: int, name=None):
r"""TODO: add doc.
Args:
range: An `int`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "ReservedAttr", name, "range", range)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_reserved_attr(
(range, name,), None)
if _result is not NotImplemented:
return _result
return reserved_attr_eager_fallback(
range=range, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
reserved_attr, (), dict(range=range, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_reserved_attr(
(range, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
range = _execute.make_int(range, "range")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"ReservedAttr", range=range, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
reserved_attr, (), dict(range=range, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
ReservedAttr = tf_export("raw_ops.ReservedAttr")(_ops.to_raw_op(reserved_attr))
_dispatcher_for_reserved_attr = reserved_attr._tf_type_based_dispatcher.Dispatch
def reserved_attr_eager_fallback(range: int, name, ctx):
range = _execute.make_int(range, "range")
_inputs_flat = []
_attrs = ("range", range)
_result = _execute.execute(b"ReservedAttr", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('reserved_input')
def reserved_input(input: Annotated[Any, _atypes.Int32], name=None):
r"""TODO: add doc.
Args:
input: A `Tensor` of type `int32`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "ReservedInput", name, input)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_reserved_input(
(input, name,), None)
if _result is not NotImplemented:
return _result
return reserved_input_eager_fallback(
input, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
reserved_input, (), dict(input=input, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_reserved_input(
(input, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"ReservedInput", input=input, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
reserved_input, (), dict(input=input, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
ReservedInput = tf_export("raw_ops.ReservedInput")(_ops.to_raw_op(reserved_input))
_dispatcher_for_reserved_input = reserved_input._tf_type_based_dispatcher.Dispatch
def reserved_input_eager_fallback(input: Annotated[Any, _atypes.Int32], name, ctx):
input = _ops.convert_to_tensor(input, _dtypes.int32)
_inputs_flat = [input]
_attrs = None
_result = _execute.execute(b"ReservedInput", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('resource_create_op')
def resource_create_op(resource: Annotated[Any, _atypes.Resource], name=None):
r"""TODO: add doc.
Args:
resource: A `Tensor` of type `resource`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "ResourceCreateOp", name, resource)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_resource_create_op(
(resource, name,), None)
if _result is not NotImplemented:
return _result
return resource_create_op_eager_fallback(
resource, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
resource_create_op, (), dict(resource=resource, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_resource_create_op(
(resource, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"ResourceCreateOp", resource=resource, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
resource_create_op, (), dict(resource=resource, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
ResourceCreateOp = tf_export("raw_ops.ResourceCreateOp")(_ops.to_raw_op(resource_create_op))
_dispatcher_for_resource_create_op = resource_create_op._tf_type_based_dispatcher.Dispatch
def resource_create_op_eager_fallback(resource: Annotated[Any, _atypes.Resource], name, ctx):
resource = _ops.convert_to_tensor(resource, _dtypes.resource)
_inputs_flat = [resource]
_attrs = None
_result = _execute.execute(b"ResourceCreateOp", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('resource_initialized_op')
def resource_initialized_op(resource: Annotated[Any, _atypes.Resource], name=None) -> Annotated[Any, _atypes.Bool]:
r"""TODO: add doc.
Args:
resource: A `Tensor` of type `resource`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `bool`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "ResourceInitializedOp", name, resource)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_resource_initialized_op(
(resource, name,), None)
if _result is not NotImplemented:
return _result
return resource_initialized_op_eager_fallback(
resource, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
resource_initialized_op, (), dict(resource=resource, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_resource_initialized_op(
(resource, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"ResourceInitializedOp", resource=resource, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
resource_initialized_op, (), dict(resource=resource, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"ResourceInitializedOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
ResourceInitializedOp = tf_export("raw_ops.ResourceInitializedOp")(_ops.to_raw_op(resource_initialized_op))
_dispatcher_for_resource_initialized_op = resource_initialized_op._tf_type_based_dispatcher.Dispatch
def resource_initialized_op_eager_fallback(resource: Annotated[Any, _atypes.Resource], name, ctx) -> Annotated[Any, _atypes.Bool]:
resource = _ops.convert_to_tensor(resource, _dtypes.resource)
_inputs_flat = [resource]
_attrs = None
_result = _execute.execute(b"ResourceInitializedOp", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"ResourceInitializedOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('resource_using_op')
def resource_using_op(resource: Annotated[Any, _atypes.Resource], name=None):
r"""TODO: add doc.
Args:
resource: A `Tensor` of type `resource`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "ResourceUsingOp", name, resource)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_resource_using_op(
(resource, name,), None)
if _result is not NotImplemented:
return _result
return resource_using_op_eager_fallback(
resource, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
resource_using_op, (), dict(resource=resource, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_resource_using_op(
(resource, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"ResourceUsingOp", resource=resource, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
resource_using_op, (), dict(resource=resource, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
ResourceUsingOp = tf_export("raw_ops.ResourceUsingOp")(_ops.to_raw_op(resource_using_op))
_dispatcher_for_resource_using_op = resource_using_op._tf_type_based_dispatcher.Dispatch
def resource_using_op_eager_fallback(resource: Annotated[Any, _atypes.Resource], name, ctx):
resource = _ops.convert_to_tensor(resource, _dtypes.resource)
_inputs_flat = [resource]
_attrs = None
_result = _execute.execute(b"ResourceUsingOp", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
TV_Restrict_T = TypeVar("TV_Restrict_T", _atypes.Bool, _atypes.String)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('restrict')
def restrict(a: Annotated[Any, TV_Restrict_T], name=None) -> Annotated[Any, TV_Restrict_T]:
r"""TODO: add doc.
Args:
a: A `Tensor`. Must be one of the following types: `string`, `bool`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `a`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Restrict", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_restrict(
(a, name,), None)
if _result is not NotImplemented:
return _result
return restrict_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
restrict, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_restrict(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Restrict", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
restrict, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"Restrict", _inputs_flat, _attrs, _result)
_result, = _result
return _result
Restrict = tf_export("raw_ops.Restrict")(_ops.to_raw_op(restrict))
_dispatcher_for_restrict = restrict._tf_type_based_dispatcher.Dispatch
def restrict_eager_fallback(a: Annotated[Any, TV_Restrict_T], name, ctx) -> Annotated[Any, TV_Restrict_T]:
_attr_T, (a,) = _execute.args_to_matching_eager([a], ctx, [_dtypes.string, _dtypes.bool, ])
_inputs_flat = [a]
_attrs = ("T", _attr_T)
_result = _execute.execute(b"Restrict", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Restrict", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('simple')
def simple(a: Annotated[Any, _atypes.Int32], name=None) -> Annotated[Any, _atypes.Float32]:
r"""TODO: add doc.
Args:
a: A `Tensor` of type `int32`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Simple", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_simple(
(a, name,), None)
if _result is not NotImplemented:
return _result
return simple_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
simple, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_simple(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Simple", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
simple, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"Simple", _inputs_flat, _attrs, _result)
_result, = _result
return _result
Simple = tf_export("raw_ops.Simple")(_ops.to_raw_op(simple))
_dispatcher_for_simple = simple._tf_type_based_dispatcher.Dispatch
def simple_eager_fallback(a: Annotated[Any, _atypes.Int32], name, ctx) -> Annotated[Any, _atypes.Float32]:
a = _ops.convert_to_tensor(a, _dtypes.int32)
_inputs_flat = [a]
_attrs = None
_result = _execute.execute(b"Simple", 1, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Simple", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('simple_struct')
def simple_struct(n_a: int, name=None):
r"""TODO: add doc.
Args:
n_a: An `int` that is `>= 0`.
name: A name for the operation (optional).
Returns:
A list of `n_a` `Tensor` objects with type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "SimpleStruct", name, "n_a", n_a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_simple_struct(
(n_a, name,), None)
if _result is not NotImplemented:
return _result
return simple_struct_eager_fallback(
n_a=n_a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
simple_struct, (), dict(n_a=n_a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_simple_struct(
(n_a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
n_a = _execute.make_int(n_a, "n_a")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"SimpleStruct", n_a=n_a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
simple_struct, (), dict(n_a=n_a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("n_a", _op._get_attr_int("n_a"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"SimpleStruct", _inputs_flat, _attrs, _result)
return _result
SimpleStruct = tf_export("raw_ops.SimpleStruct")(_ops.to_raw_op(simple_struct))
_dispatcher_for_simple_struct = simple_struct._tf_type_based_dispatcher.Dispatch
def simple_struct_eager_fallback(n_a: int, name, ctx):
n_a = _execute.make_int(n_a, "n_a")
_inputs_flat = []
_attrs = ("n_a", n_a)
_result = _execute.execute(b"SimpleStruct", n_a, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"SimpleStruct", _inputs_flat, _attrs, _result)
return _result
TV_SleepIdentityOp_T = TypeVar("TV_SleepIdentityOp_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('sleep_identity_op')
def sleep_identity_op(sleep_seconds: Annotated[Any, _atypes.Int32], input: Annotated[Any, TV_SleepIdentityOp_T], name=None) -> Annotated[Any, TV_SleepIdentityOp_T]:
r"""TODO: add doc.
Args:
sleep_seconds: A `Tensor` of type `int32`.
input: A `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `input`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "SleepIdentityOp", name, sleep_seconds, input)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_sleep_identity_op(
(sleep_seconds, input, name,), None)
if _result is not NotImplemented:
return _result
return sleep_identity_op_eager_fallback(
sleep_seconds, input, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
sleep_identity_op, (), dict(sleep_seconds=sleep_seconds,
input=input, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_sleep_identity_op(
(sleep_seconds, input, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"SleepIdentityOp", sleep_seconds=sleep_seconds, input=input,
name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
sleep_identity_op, (), dict(sleep_seconds=sleep_seconds,
input=input, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"SleepIdentityOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
SleepIdentityOp = tf_export("raw_ops.SleepIdentityOp")(_ops.to_raw_op(sleep_identity_op))
_dispatcher_for_sleep_identity_op = sleep_identity_op._tf_type_based_dispatcher.Dispatch
def sleep_identity_op_eager_fallback(sleep_seconds: Annotated[Any, _atypes.Int32], input: Annotated[Any, TV_SleepIdentityOp_T], name, ctx) -> Annotated[Any, TV_SleepIdentityOp_T]:
_attr_T, (input,) = _execute.args_to_matching_eager([input], ctx, [])
sleep_seconds = _ops.convert_to_tensor(sleep_seconds, _dtypes.int32)
_inputs_flat = [sleep_seconds, input]
_attrs = ("T", _attr_T)
_result = _execute.execute(b"SleepIdentityOp", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"SleepIdentityOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('sleep_op')
def sleep_op(sleep_seconds: Annotated[Any, _atypes.Int32], name=None):
r"""TODO: add doc.
Args:
sleep_seconds: A `Tensor` of type `int32`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "SleepOp", name, sleep_seconds)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_sleep_op(
(sleep_seconds, name,), None)
if _result is not NotImplemented:
return _result
return sleep_op_eager_fallback(
sleep_seconds, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
sleep_op, (), dict(sleep_seconds=sleep_seconds, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_sleep_op(
(sleep_seconds, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"SleepOp", sleep_seconds=sleep_seconds, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
sleep_op, (), dict(sleep_seconds=sleep_seconds, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
SleepOp = tf_export("raw_ops.SleepOp")(_ops.to_raw_op(sleep_op))
_dispatcher_for_sleep_op = sleep_op._tf_type_based_dispatcher.Dispatch
def sleep_op_eager_fallback(sleep_seconds: Annotated[Any, _atypes.Int32], name, ctx):
sleep_seconds = _ops.convert_to_tensor(sleep_seconds, _dtypes.int32)
_inputs_flat = [sleep_seconds]
_attrs = None
_result = _execute.execute(b"SleepOp", 0, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('string_list_attr')
def string_list_attr(a, b: str, name=None):
r"""TODO: add doc.
Args:
a: A list of `strings`.
b: A `string`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "StringListAttr", name, "a", a, "b", b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_string_list_attr(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return string_list_attr_eager_fallback(
a=a, b=b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
string_list_attr, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_string_list_attr(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'string_list_attr' Op, not %r." % a)
a = [_execute.make_str(_s, "a") for _s in a]
b = _execute.make_str(b, "b")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"StringListAttr", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
string_list_attr, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
StringListAttr = tf_export("raw_ops.StringListAttr")(_ops.to_raw_op(string_list_attr))
_dispatcher_for_string_list_attr = string_list_attr._tf_type_based_dispatcher.Dispatch
def string_list_attr_eager_fallback(a, b: str, name, ctx):
if not isinstance(a, (list, tuple)):
raise TypeError(
"Expected list for 'a' argument to "
"'string_list_attr' Op, not %r." % a)
a = [_execute.make_str(_s, "a") for _s in a]
b = _execute.make_str(b, "b")
_inputs_flat = []
_attrs = ("a", a, "b", b)
_result = _execute.execute(b"StringListAttr", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('stub_resource_handle_op')
def stub_resource_handle_op(container:str="", shared_name:str="", name=None) -> Annotated[Any, _atypes.Resource]:
r"""TODO: add doc.
Args:
container: An optional `string`. Defaults to `""`.
shared_name: An optional `string`. Defaults to `""`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `resource`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "StubResourceHandleOp", name, "container", container,
"shared_name", shared_name)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_stub_resource_handle_op(
(container, shared_name, name,), None)
if _result is not NotImplemented:
return _result
return stub_resource_handle_op_eager_fallback(
container=container, shared_name=shared_name, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
stub_resource_handle_op, (), dict(container=container,
shared_name=shared_name,
name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_stub_resource_handle_op(
(container, shared_name, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
if container is None:
container = ""
container = _execute.make_str(container, "container")
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"StubResourceHandleOp", container=container, shared_name=shared_name,
name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
stub_resource_handle_op, (), dict(container=container,
shared_name=shared_name,
name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("container", _op.get_attr("container"), "shared_name",
_op.get_attr("shared_name"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"StubResourceHandleOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
StubResourceHandleOp = tf_export("raw_ops.StubResourceHandleOp")(_ops.to_raw_op(stub_resource_handle_op))
_dispatcher_for_stub_resource_handle_op = stub_resource_handle_op._tf_type_based_dispatcher.Dispatch
def stub_resource_handle_op_eager_fallback(container: str, shared_name: str, name, ctx) -> Annotated[Any, _atypes.Resource]:
if container is None:
container = ""
container = _execute.make_str(container, "container")
if shared_name is None:
shared_name = ""
shared_name = _execute.make_str(shared_name, "shared_name")
_inputs_flat = []
_attrs = ("container", container, "shared_name", shared_name)
_result = _execute.execute(b"StubResourceHandleOp", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"StubResourceHandleOp", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TV_TestAttr_T = TypeVar("TV_TestAttr_T", _atypes.Float32, _atypes.Float64)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('test_attr')
def test_attr(T: TV_TestAttr_T, name=None) -> Annotated[Any, TV_TestAttr_T]:
r"""TODO: add doc.
Args:
T: A `tf.DType` from: `tf.float32, tf.float64`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `T`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "TestAttr", name, "T", T)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_test_attr(
(T, name,), None)
if _result is not NotImplemented:
return _result
return test_attr_eager_fallback(
T=T, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
test_attr, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_test_attr(
(T, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
T = _execute.make_type(T, "T")
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TestAttr", T=T, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
test_attr, (), dict(T=T, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"TestAttr", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TestAttr = tf_export("raw_ops.TestAttr")(_ops.to_raw_op(test_attr))
_dispatcher_for_test_attr = test_attr._tf_type_based_dispatcher.Dispatch
def test_attr_eager_fallback(T: TV_TestAttr_T, name, ctx) -> Annotated[Any, TV_TestAttr_T]:
T = _execute.make_type(T, "T")
_inputs_flat = []
_attrs = ("T", T)
_result = _execute.execute(b"TestAttr", 1, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"TestAttr", _inputs_flat, _attrs, _result)
_result, = _result
return _result
_TestStringOutputOutput = collections.namedtuple(
"TestStringOutput",
["output1", "output2"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('test_string_output')
def test_string_output(input: Annotated[Any, _atypes.Float32], name=None):
r"""TODO: add doc.
Args:
input: A `Tensor` of type `float32`.
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (output1, output2).
output1: A `Tensor` of type `float32`.
output2: A `Tensor` of type `string`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "TestStringOutput", name, input)
_result = _TestStringOutputOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_test_string_output(
(input, name,), None)
if _result is not NotImplemented:
return _result
return test_string_output_eager_fallback(
input, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
test_string_output, (), dict(input=input, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_test_string_output(
(input, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TestStringOutput", input=input, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
test_string_output, (), dict(input=input, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"TestStringOutput", _inputs_flat, _attrs, _result)
_result = _TestStringOutputOutput._make(_result)
return _result
TestStringOutput = tf_export("raw_ops.TestStringOutput")(_ops.to_raw_op(test_string_output))
_dispatcher_for_test_string_output = test_string_output._tf_type_based_dispatcher.Dispatch
def test_string_output_eager_fallback(input: Annotated[Any, _atypes.Float32], name, ctx):
input = _ops.convert_to_tensor(input, _dtypes.float32)
_inputs_flat = [input]
_attrs = None
_result = _execute.execute(b"TestStringOutput", 2, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"TestStringOutput", _inputs_flat, _attrs, _result)
_result = _TestStringOutputOutput._make(_result)
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('two_float_inputs')
def two_float_inputs(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name=None):
r"""TODO: add doc.
Args:
a: A `Tensor` of type `float32`.
b: A `Tensor` of type `float32`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "TwoFloatInputs", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_two_float_inputs(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return two_float_inputs_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_float_inputs, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_two_float_inputs(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TwoFloatInputs", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_float_inputs, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
TwoFloatInputs = tf_export("raw_ops.TwoFloatInputs")(_ops.to_raw_op(two_float_inputs))
_dispatcher_for_two_float_inputs = two_float_inputs._tf_type_based_dispatcher.Dispatch
def two_float_inputs_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name, ctx):
a = _ops.convert_to_tensor(a, _dtypes.float32)
b = _ops.convert_to_tensor(b, _dtypes.float32)
_inputs_flat = [a, b]
_attrs = None
_result = _execute.execute(b"TwoFloatInputs", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('two_float_inputs_float_output')
def two_float_inputs_float_output(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, _atypes.Float32]:
r"""TODO: add doc.
Args:
a: A `Tensor` of type `float32`.
b: A `Tensor` of type `float32`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "TwoFloatInputsFloatOutput", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_two_float_inputs_float_output(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return two_float_inputs_float_output_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_float_inputs_float_output, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_two_float_inputs_float_output(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TwoFloatInputsFloatOutput", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_float_inputs_float_output, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"TwoFloatInputsFloatOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TwoFloatInputsFloatOutput = tf_export("raw_ops.TwoFloatInputsFloatOutput")(_ops.to_raw_op(two_float_inputs_float_output))
_dispatcher_for_two_float_inputs_float_output = two_float_inputs_float_output._tf_type_based_dispatcher.Dispatch
def two_float_inputs_float_output_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, _atypes.Float32]:
a = _ops.convert_to_tensor(a, _dtypes.float32)
b = _ops.convert_to_tensor(b, _dtypes.float32)
_inputs_flat = [a, b]
_attrs = None
_result = _execute.execute(b"TwoFloatInputsFloatOutput", 1,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"TwoFloatInputsFloatOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('two_float_inputs_int_output')
def two_float_inputs_int_output(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name=None) -> Annotated[Any, _atypes.Int32]:
r"""TODO: add doc.
Args:
a: A `Tensor` of type `float32`.
b: A `Tensor` of type `float32`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "TwoFloatInputsIntOutput", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_two_float_inputs_int_output(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return two_float_inputs_int_output_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_float_inputs_int_output, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_two_float_inputs_int_output(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TwoFloatInputsIntOutput", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_float_inputs_int_output, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"TwoFloatInputsIntOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
TwoFloatInputsIntOutput = tf_export("raw_ops.TwoFloatInputsIntOutput")(_ops.to_raw_op(two_float_inputs_int_output))
_dispatcher_for_two_float_inputs_int_output = two_float_inputs_int_output._tf_type_based_dispatcher.Dispatch
def two_float_inputs_int_output_eager_fallback(a: Annotated[Any, _atypes.Float32], b: Annotated[Any, _atypes.Float32], name, ctx) -> Annotated[Any, _atypes.Int32]:
a = _ops.convert_to_tensor(a, _dtypes.float32)
b = _ops.convert_to_tensor(b, _dtypes.float32)
_inputs_flat = [a, b]
_attrs = None
_result = _execute.execute(b"TwoFloatInputsIntOutput", 1,
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"TwoFloatInputsIntOutput", _inputs_flat, _attrs, _result)
_result, = _result
return _result
_TwoFloatOutputsOutput = collections.namedtuple(
"TwoFloatOutputs",
["a", "b"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('two_float_outputs')
def two_float_outputs(name=None):
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (a, b).
a: A `Tensor` of type `float32`.
b: A `Tensor` of type `float32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "TwoFloatOutputs", name)
_result = _TwoFloatOutputsOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_two_float_outputs(
(name,), None)
if _result is not NotImplemented:
return _result
return two_float_outputs_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_float_outputs, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_two_float_outputs(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TwoFloatOutputs", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_float_outputs, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"TwoFloatOutputs", _inputs_flat, _attrs, _result)
_result = _TwoFloatOutputsOutput._make(_result)
return _result
TwoFloatOutputs = tf_export("raw_ops.TwoFloatOutputs")(_ops.to_raw_op(two_float_outputs))
_dispatcher_for_two_float_outputs = two_float_outputs._tf_type_based_dispatcher.Dispatch
def two_float_outputs_eager_fallback(name, ctx):
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"TwoFloatOutputs", 2, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"TwoFloatOutputs", _inputs_flat, _attrs, _result)
_result = _TwoFloatOutputsOutput._make(_result)
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('two_int_inputs')
def two_int_inputs(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Int32], name=None):
r"""TODO: add doc.
Args:
a: A `Tensor` of type `int32`.
b: A `Tensor` of type `int32`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "TwoIntInputs", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_two_int_inputs(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return two_int_inputs_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_int_inputs, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_two_int_inputs(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TwoIntInputs", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_int_inputs, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
TwoIntInputs = tf_export("raw_ops.TwoIntInputs")(_ops.to_raw_op(two_int_inputs))
_dispatcher_for_two_int_inputs = two_int_inputs._tf_type_based_dispatcher.Dispatch
def two_int_inputs_eager_fallback(a: Annotated[Any, _atypes.Int32], b: Annotated[Any, _atypes.Int32], name, ctx):
a = _ops.convert_to_tensor(a, _dtypes.int32)
b = _ops.convert_to_tensor(b, _dtypes.int32)
_inputs_flat = [a, b]
_attrs = None
_result = _execute.execute(b"TwoIntInputs", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
_TwoIntOutputsOutput = collections.namedtuple(
"TwoIntOutputs",
["a", "b"])
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('two_int_outputs')
def two_int_outputs(name=None):
r"""TODO: add doc.
Args:
name: A name for the operation (optional).
Returns:
A tuple of `Tensor` objects (a, b).
a: A `Tensor` of type `int32`.
b: A `Tensor` of type `int32`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "TwoIntOutputs", name)
_result = _TwoIntOutputsOutput._make(_result)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_two_int_outputs(
(name,), None)
if _result is not NotImplemented:
return _result
return two_int_outputs_eager_fallback(
name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_int_outputs, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_two_int_outputs(
(name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TwoIntOutputs", name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_int_outputs, (), dict(name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ()
_inputs_flat = _op.inputs
_execute.record_gradient(
"TwoIntOutputs", _inputs_flat, _attrs, _result)
_result = _TwoIntOutputsOutput._make(_result)
return _result
TwoIntOutputs = tf_export("raw_ops.TwoIntOutputs")(_ops.to_raw_op(two_int_outputs))
_dispatcher_for_two_int_outputs = two_int_outputs._tf_type_based_dispatcher.Dispatch
def two_int_outputs_eager_fallback(name, ctx):
_inputs_flat = []
_attrs = None
_result = _execute.execute(b"TwoIntOutputs", 2, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"TwoIntOutputs", _inputs_flat, _attrs, _result)
_result = _TwoIntOutputsOutput._make(_result)
return _result
TV_TwoRefsIn_T = TypeVar("TV_TwoRefsIn_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('two_refs_in')
def two_refs_in(a: Annotated[Any, TV_TwoRefsIn_T], b: Annotated[Any, TV_TwoRefsIn_T], name=None):
r"""TODO: add doc.
Args:
a: A mutable `Tensor`.
b: A mutable `Tensor`. Must have the same type as `a`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
raise RuntimeError("two_refs_in op does not support eager execution. Arg 'b' is a ref.")
else:
_result = _dispatcher_for_two_refs_in(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TwoRefsIn", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
two_refs_in, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
TwoRefsIn = tf_export("raw_ops.TwoRefsIn")(_ops.to_raw_op(two_refs_in))
_dispatcher_for_two_refs_in = two_refs_in._tf_type_based_dispatcher.Dispatch
def two_refs_in_eager_fallback(a: Annotated[Any, TV_TwoRefsIn_T], b: Annotated[Any, TV_TwoRefsIn_T], name, ctx):
raise RuntimeError("two_refs_in op does not support eager execution. Arg 'b' is a ref.")
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('type_list')
def type_list(a, name=None):
r"""TODO: add doc.
Args:
a: A list of `Tensor` objects.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "TypeList", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_type_list(
(a, name,), None)
if _result is not NotImplemented:
return _result
return type_list_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
type_list, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_type_list(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TypeList", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
type_list, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
TypeList = tf_export("raw_ops.TypeList")(_ops.to_raw_op(type_list))
_dispatcher_for_type_list = type_list._tf_type_based_dispatcher.Dispatch
def type_list_eager_fallback(a, name, ctx):
_attr_T, a = _execute.convert_to_mixed_eager_tensors(a, ctx)
_inputs_flat = list(a)
_attrs = ("T", _attr_T)
_result = _execute.execute(b"TypeList", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('type_list_restrict')
def type_list_restrict(a, name=None):
r"""TODO: add doc.
Args:
a: A list of `Tensor` objects with types from: `string`, `bool`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "TypeListRestrict", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_type_list_restrict(
(a, name,), None)
if _result is not NotImplemented:
return _result
return type_list_restrict_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
type_list_restrict, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_type_list_restrict(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TypeListRestrict", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
type_list_restrict, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
TypeListRestrict = tf_export("raw_ops.TypeListRestrict")(_ops.to_raw_op(type_list_restrict))
_dispatcher_for_type_list_restrict = type_list_restrict._tf_type_based_dispatcher.Dispatch
def type_list_restrict_eager_fallback(a, name, ctx):
_attr_T, a = _execute.convert_to_mixed_eager_tensors(a, ctx)
_inputs_flat = list(a)
_attrs = ("T", _attr_T)
_result = _execute.execute(b"TypeListRestrict", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('type_list_twice')
def type_list_twice(a, b, name=None):
r"""TODO: add doc.
Args:
a: A list of `Tensor` objects.
b: A list of `Tensor` objects. Must have the same type as `a`.
name: A name for the operation (optional).
Returns:
The created Operation.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "TypeListTwice", name, a, b)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_type_list_twice(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
return type_list_twice_eager_fallback(
a, b, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
type_list_twice, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_type_list_twice(
(a, b, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"TypeListTwice", a=a, b=b, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
type_list_twice, (), dict(a=a, b=b, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
return _op
TypeListTwice = tf_export("raw_ops.TypeListTwice")(_ops.to_raw_op(type_list_twice))
_dispatcher_for_type_list_twice = type_list_twice._tf_type_based_dispatcher.Dispatch
def type_list_twice_eager_fallback(a, b, name, ctx):
_attr_T, (a, b) = _execute.args_to_mixed_eager_tensors((a, b), ctx)
_inputs_flat = list(a) + list(b)
_attrs = ("T", _attr_T)
_result = _execute.execute(b"TypeListTwice", 0, inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
_result = None
return _result
TV_Unary_T = TypeVar("TV_Unary_T", _atypes.BFloat16, _atypes.Bool, _atypes.Complex128, _atypes.Complex64, _atypes.Float16, _atypes.Float32, _atypes.Float64, _atypes.Float8e4m3fn, _atypes.Float8e5m2, _atypes.Half, _atypes.Int16, _atypes.Int32, _atypes.Int4, _atypes.Int64, _atypes.Int8, _atypes.QInt16, _atypes.QInt32, _atypes.QInt8, _atypes.QUInt16, _atypes.QUInt8, _atypes.Resource, _atypes.String, _atypes.UInt16, _atypes.UInt32, _atypes.UInt4, _atypes.UInt64, _atypes.UInt8, _atypes.Variant)
@_dispatch.add_fallback_dispatch_list
@_dispatch.add_type_based_api_dispatcher
@tf_export('unary')
def unary(a: Annotated[Any, TV_Unary_T], name=None) -> Annotated[Any, TV_Unary_T]:
r"""TODO: add doc.
Args:
a: A `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor`. Has the same type as `a`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "Unary", name, a)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
_result = _dispatcher_for_unary(
(a, name,), None)
if _result is not NotImplemented:
return _result
return unary_eager_fallback(
a, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
except (TypeError, ValueError):
_result = _dispatch.dispatch(
unary, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
else:
_result = _dispatcher_for_unary(
(a, name,), None)
if _result is not NotImplemented:
return _result
# Add nodes to the TensorFlow graph.
try:
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"Unary", a=a, name=name)
except (TypeError, ValueError):
_result = _dispatch.dispatch(
unary, (), dict(a=a, name=name)
)
if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
return _result
raise
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("T", _op._get_attr_type("T"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"Unary", _inputs_flat, _attrs, _result)
_result, = _result
return _result
Unary = tf_export("raw_ops.Unary")(_ops.to_raw_op(unary))
_dispatcher_for_unary = unary._tf_type_based_dispatcher.Dispatch
def unary_eager_fallback(a: Annotated[Any, TV_Unary_T], name, ctx) -> Annotated[Any, TV_Unary_T]:
_attr_T, (a,) = _execute.args_to_matching_eager([a], ctx, [])
_inputs_flat = [a]
_attrs = ("T", _attr_T)
_result = _execute.execute(b"Unary", 1, inputs=_inputs_flat, attrs=_attrs,
ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"Unary", _inputs_flat, _attrs, _result)
_result, = _result
return _result