Inzynierka/Lib/site-packages/scipy/special/tests/test_orthogonal_eval.py

269 lines
9.1 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
import numpy as np
from numpy.testing import assert_, assert_allclose
import pytest
from scipy.special import _ufuncs
import scipy.special._orthogonal as orth
from scipy.special._testutils import FuncData
def test_eval_chebyt():
n = np.arange(0, 10000, 7)
x = 2*np.random.rand() - 1
v1 = np.cos(n*np.arccos(x))
v2 = _ufuncs.eval_chebyt(n, x)
assert_(np.allclose(v1, v2, rtol=1e-15))
def test_eval_genlaguerre_restriction():
# check it returns nan for alpha <= -1
assert_(np.isnan(_ufuncs.eval_genlaguerre(0, -1, 0)))
assert_(np.isnan(_ufuncs.eval_genlaguerre(0.1, -1, 0)))
def test_warnings():
# ticket 1334
with np.errstate(all='raise'):
# these should raise no fp warnings
_ufuncs.eval_legendre(1, 0)
_ufuncs.eval_laguerre(1, 1)
_ufuncs.eval_gegenbauer(1, 1, 0)
class TestPolys:
"""
Check that the eval_* functions agree with the constructed polynomials
"""
def check_poly(self, func, cls, param_ranges=[], x_range=[], nn=10,
nparam=10, nx=10, rtol=1e-8):
np.random.seed(1234)
dataset = []
for n in np.arange(nn):
params = [a + (b-a)*np.random.rand(nparam) for a,b in param_ranges]
params = np.asarray(params).T
if not param_ranges:
params = [0]
for p in params:
if param_ranges:
p = (n,) + tuple(p)
else:
p = (n,)
x = x_range[0] + (x_range[1] - x_range[0])*np.random.rand(nx)
x[0] = x_range[0] # always include domain start point
x[1] = x_range[1] # always include domain end point
poly = np.poly1d(cls(*p).coef)
z = np.c_[np.tile(p, (nx,1)), x, poly(x)]
dataset.append(z)
dataset = np.concatenate(dataset, axis=0)
def polyfunc(*p):
p = (p[0].astype(int),) + p[1:]
return func(*p)
with np.errstate(all='raise'):
ds = FuncData(polyfunc, dataset, list(range(len(param_ranges)+2)), -1,
rtol=rtol)
ds.check()
def test_jacobi(self):
self.check_poly(_ufuncs.eval_jacobi, orth.jacobi,
param_ranges=[(-0.99, 10), (-0.99, 10)],
x_range=[-1, 1], rtol=1e-5)
def test_sh_jacobi(self):
self.check_poly(_ufuncs.eval_sh_jacobi, orth.sh_jacobi,
param_ranges=[(1, 10), (0, 1)], x_range=[0, 1],
rtol=1e-5)
def test_gegenbauer(self):
self.check_poly(_ufuncs.eval_gegenbauer, orth.gegenbauer,
param_ranges=[(-0.499, 10)], x_range=[-1, 1],
rtol=1e-7)
def test_chebyt(self):
self.check_poly(_ufuncs.eval_chebyt, orth.chebyt,
param_ranges=[], x_range=[-1, 1])
def test_chebyu(self):
self.check_poly(_ufuncs.eval_chebyu, orth.chebyu,
param_ranges=[], x_range=[-1, 1])
def test_chebys(self):
self.check_poly(_ufuncs.eval_chebys, orth.chebys,
param_ranges=[], x_range=[-2, 2])
def test_chebyc(self):
self.check_poly(_ufuncs.eval_chebyc, orth.chebyc,
param_ranges=[], x_range=[-2, 2])
def test_sh_chebyt(self):
with np.errstate(all='ignore'):
self.check_poly(_ufuncs.eval_sh_chebyt, orth.sh_chebyt,
param_ranges=[], x_range=[0, 1])
def test_sh_chebyu(self):
self.check_poly(_ufuncs.eval_sh_chebyu, orth.sh_chebyu,
param_ranges=[], x_range=[0, 1])
def test_legendre(self):
self.check_poly(_ufuncs.eval_legendre, orth.legendre,
param_ranges=[], x_range=[-1, 1])
def test_sh_legendre(self):
with np.errstate(all='ignore'):
self.check_poly(_ufuncs.eval_sh_legendre, orth.sh_legendre,
param_ranges=[], x_range=[0, 1])
def test_genlaguerre(self):
self.check_poly(_ufuncs.eval_genlaguerre, orth.genlaguerre,
param_ranges=[(-0.99, 10)], x_range=[0, 100])
def test_laguerre(self):
self.check_poly(_ufuncs.eval_laguerre, orth.laguerre,
param_ranges=[], x_range=[0, 100])
def test_hermite(self):
self.check_poly(_ufuncs.eval_hermite, orth.hermite,
param_ranges=[], x_range=[-100, 100])
def test_hermitenorm(self):
self.check_poly(_ufuncs.eval_hermitenorm, orth.hermitenorm,
param_ranges=[], x_range=[-100, 100])
class TestRecurrence:
"""
Check that the eval_* functions sig='ld->d' and 'dd->d' agree.
"""
def check_poly(self, func, param_ranges=[], x_range=[], nn=10,
nparam=10, nx=10, rtol=1e-8):
np.random.seed(1234)
dataset = []
for n in np.arange(nn):
params = [a + (b-a)*np.random.rand(nparam) for a,b in param_ranges]
params = np.asarray(params).T
if not param_ranges:
params = [0]
for p in params:
if param_ranges:
p = (n,) + tuple(p)
else:
p = (n,)
x = x_range[0] + (x_range[1] - x_range[0])*np.random.rand(nx)
x[0] = x_range[0] # always include domain start point
x[1] = x_range[1] # always include domain end point
kw = dict(sig=(len(p)+1)*'d'+'->d')
z = np.c_[np.tile(p, (nx,1)), x, func(*(p + (x,)), **kw)]
dataset.append(z)
dataset = np.concatenate(dataset, axis=0)
def polyfunc(*p):
p = (p[0].astype(int),) + p[1:]
kw = dict(sig='l'+(len(p)-1)*'d'+'->d')
return func(*p, **kw)
with np.errstate(all='raise'):
ds = FuncData(polyfunc, dataset, list(range(len(param_ranges)+2)), -1,
rtol=rtol)
ds.check()
def test_jacobi(self):
self.check_poly(_ufuncs.eval_jacobi,
param_ranges=[(-0.99, 10), (-0.99, 10)],
x_range=[-1, 1])
def test_sh_jacobi(self):
self.check_poly(_ufuncs.eval_sh_jacobi,
param_ranges=[(1, 10), (0, 1)], x_range=[0, 1])
def test_gegenbauer(self):
self.check_poly(_ufuncs.eval_gegenbauer,
param_ranges=[(-0.499, 10)], x_range=[-1, 1])
def test_chebyt(self):
self.check_poly(_ufuncs.eval_chebyt,
param_ranges=[], x_range=[-1, 1])
def test_chebyu(self):
self.check_poly(_ufuncs.eval_chebyu,
param_ranges=[], x_range=[-1, 1])
def test_chebys(self):
self.check_poly(_ufuncs.eval_chebys,
param_ranges=[], x_range=[-2, 2])
def test_chebyc(self):
self.check_poly(_ufuncs.eval_chebyc,
param_ranges=[], x_range=[-2, 2])
def test_sh_chebyt(self):
self.check_poly(_ufuncs.eval_sh_chebyt,
param_ranges=[], x_range=[0, 1])
def test_sh_chebyu(self):
self.check_poly(_ufuncs.eval_sh_chebyu,
param_ranges=[], x_range=[0, 1])
def test_legendre(self):
self.check_poly(_ufuncs.eval_legendre,
param_ranges=[], x_range=[-1, 1])
def test_sh_legendre(self):
self.check_poly(_ufuncs.eval_sh_legendre,
param_ranges=[], x_range=[0, 1])
def test_genlaguerre(self):
self.check_poly(_ufuncs.eval_genlaguerre,
param_ranges=[(-0.99, 10)], x_range=[0, 100])
def test_laguerre(self):
self.check_poly(_ufuncs.eval_laguerre,
param_ranges=[], x_range=[0, 100])
def test_hermite(self):
v = _ufuncs.eval_hermite(70, 1.0)
a = -1.457076485701412e60
assert_allclose(v, a)
def test_hermite_domain():
# Regression test for gh-11091.
assert np.isnan(_ufuncs.eval_hermite(-1, 1.0))
assert np.isnan(_ufuncs.eval_hermitenorm(-1, 1.0))
@pytest.mark.parametrize("n", [0, 1, 2])
@pytest.mark.parametrize("x", [0, 1, np.nan])
def test_hermite_nan(n, x):
# Regression test for gh-11369.
assert np.isnan(_ufuncs.eval_hermite(n, x)) == np.any(np.isnan([n, x]))
assert np.isnan(_ufuncs.eval_hermitenorm(n, x)) == np.any(np.isnan([n, x]))
@pytest.mark.parametrize('n', [0, 1, 2, 3.2])
@pytest.mark.parametrize('alpha', [1, np.nan])
@pytest.mark.parametrize('x', [2, np.nan])
def test_genlaguerre_nan(n, alpha, x):
# Regression test for gh-11361.
nan_laguerre = np.isnan(_ufuncs.eval_genlaguerre(n, alpha, x))
nan_arg = np.any(np.isnan([n, alpha, x]))
assert nan_laguerre == nan_arg
@pytest.mark.parametrize('n', [0, 1, 2, 3.2])
@pytest.mark.parametrize('alpha', [0.0, 1, np.nan])
@pytest.mark.parametrize('x', [1e-6, 2, np.nan])
def test_gegenbauer_nan(n, alpha, x):
# Regression test for gh-11370.
nan_gegenbauer = np.isnan(_ufuncs.eval_gegenbauer(n, alpha, x))
nan_arg = np.any(np.isnan([n, alpha, x]))
assert nan_gegenbauer == nan_arg