269 lines
9.1 KiB
Python
269 lines
9.1 KiB
Python
import numpy as np
|
|
from numpy.testing import assert_, assert_allclose
|
|
import pytest
|
|
|
|
from scipy.special import _ufuncs
|
|
import scipy.special._orthogonal as orth
|
|
from scipy.special._testutils import FuncData
|
|
|
|
|
|
def test_eval_chebyt():
|
|
n = np.arange(0, 10000, 7)
|
|
x = 2*np.random.rand() - 1
|
|
v1 = np.cos(n*np.arccos(x))
|
|
v2 = _ufuncs.eval_chebyt(n, x)
|
|
assert_(np.allclose(v1, v2, rtol=1e-15))
|
|
|
|
|
|
def test_eval_genlaguerre_restriction():
|
|
# check it returns nan for alpha <= -1
|
|
assert_(np.isnan(_ufuncs.eval_genlaguerre(0, -1, 0)))
|
|
assert_(np.isnan(_ufuncs.eval_genlaguerre(0.1, -1, 0)))
|
|
|
|
|
|
def test_warnings():
|
|
# ticket 1334
|
|
with np.errstate(all='raise'):
|
|
# these should raise no fp warnings
|
|
_ufuncs.eval_legendre(1, 0)
|
|
_ufuncs.eval_laguerre(1, 1)
|
|
_ufuncs.eval_gegenbauer(1, 1, 0)
|
|
|
|
|
|
class TestPolys:
|
|
"""
|
|
Check that the eval_* functions agree with the constructed polynomials
|
|
|
|
"""
|
|
|
|
def check_poly(self, func, cls, param_ranges=[], x_range=[], nn=10,
|
|
nparam=10, nx=10, rtol=1e-8):
|
|
np.random.seed(1234)
|
|
|
|
dataset = []
|
|
for n in np.arange(nn):
|
|
params = [a + (b-a)*np.random.rand(nparam) for a,b in param_ranges]
|
|
params = np.asarray(params).T
|
|
if not param_ranges:
|
|
params = [0]
|
|
for p in params:
|
|
if param_ranges:
|
|
p = (n,) + tuple(p)
|
|
else:
|
|
p = (n,)
|
|
x = x_range[0] + (x_range[1] - x_range[0])*np.random.rand(nx)
|
|
x[0] = x_range[0] # always include domain start point
|
|
x[1] = x_range[1] # always include domain end point
|
|
poly = np.poly1d(cls(*p).coef)
|
|
z = np.c_[np.tile(p, (nx,1)), x, poly(x)]
|
|
dataset.append(z)
|
|
|
|
dataset = np.concatenate(dataset, axis=0)
|
|
|
|
def polyfunc(*p):
|
|
p = (p[0].astype(int),) + p[1:]
|
|
return func(*p)
|
|
|
|
with np.errstate(all='raise'):
|
|
ds = FuncData(polyfunc, dataset, list(range(len(param_ranges)+2)), -1,
|
|
rtol=rtol)
|
|
ds.check()
|
|
|
|
def test_jacobi(self):
|
|
self.check_poly(_ufuncs.eval_jacobi, orth.jacobi,
|
|
param_ranges=[(-0.99, 10), (-0.99, 10)],
|
|
x_range=[-1, 1], rtol=1e-5)
|
|
|
|
def test_sh_jacobi(self):
|
|
self.check_poly(_ufuncs.eval_sh_jacobi, orth.sh_jacobi,
|
|
param_ranges=[(1, 10), (0, 1)], x_range=[0, 1],
|
|
rtol=1e-5)
|
|
|
|
def test_gegenbauer(self):
|
|
self.check_poly(_ufuncs.eval_gegenbauer, orth.gegenbauer,
|
|
param_ranges=[(-0.499, 10)], x_range=[-1, 1],
|
|
rtol=1e-7)
|
|
|
|
def test_chebyt(self):
|
|
self.check_poly(_ufuncs.eval_chebyt, orth.chebyt,
|
|
param_ranges=[], x_range=[-1, 1])
|
|
|
|
def test_chebyu(self):
|
|
self.check_poly(_ufuncs.eval_chebyu, orth.chebyu,
|
|
param_ranges=[], x_range=[-1, 1])
|
|
|
|
def test_chebys(self):
|
|
self.check_poly(_ufuncs.eval_chebys, orth.chebys,
|
|
param_ranges=[], x_range=[-2, 2])
|
|
|
|
def test_chebyc(self):
|
|
self.check_poly(_ufuncs.eval_chebyc, orth.chebyc,
|
|
param_ranges=[], x_range=[-2, 2])
|
|
|
|
def test_sh_chebyt(self):
|
|
with np.errstate(all='ignore'):
|
|
self.check_poly(_ufuncs.eval_sh_chebyt, orth.sh_chebyt,
|
|
param_ranges=[], x_range=[0, 1])
|
|
|
|
def test_sh_chebyu(self):
|
|
self.check_poly(_ufuncs.eval_sh_chebyu, orth.sh_chebyu,
|
|
param_ranges=[], x_range=[0, 1])
|
|
|
|
def test_legendre(self):
|
|
self.check_poly(_ufuncs.eval_legendre, orth.legendre,
|
|
param_ranges=[], x_range=[-1, 1])
|
|
|
|
def test_sh_legendre(self):
|
|
with np.errstate(all='ignore'):
|
|
self.check_poly(_ufuncs.eval_sh_legendre, orth.sh_legendre,
|
|
param_ranges=[], x_range=[0, 1])
|
|
|
|
def test_genlaguerre(self):
|
|
self.check_poly(_ufuncs.eval_genlaguerre, orth.genlaguerre,
|
|
param_ranges=[(-0.99, 10)], x_range=[0, 100])
|
|
|
|
def test_laguerre(self):
|
|
self.check_poly(_ufuncs.eval_laguerre, orth.laguerre,
|
|
param_ranges=[], x_range=[0, 100])
|
|
|
|
def test_hermite(self):
|
|
self.check_poly(_ufuncs.eval_hermite, orth.hermite,
|
|
param_ranges=[], x_range=[-100, 100])
|
|
|
|
def test_hermitenorm(self):
|
|
self.check_poly(_ufuncs.eval_hermitenorm, orth.hermitenorm,
|
|
param_ranges=[], x_range=[-100, 100])
|
|
|
|
|
|
class TestRecurrence:
|
|
"""
|
|
Check that the eval_* functions sig='ld->d' and 'dd->d' agree.
|
|
|
|
"""
|
|
|
|
def check_poly(self, func, param_ranges=[], x_range=[], nn=10,
|
|
nparam=10, nx=10, rtol=1e-8):
|
|
np.random.seed(1234)
|
|
|
|
dataset = []
|
|
for n in np.arange(nn):
|
|
params = [a + (b-a)*np.random.rand(nparam) for a,b in param_ranges]
|
|
params = np.asarray(params).T
|
|
if not param_ranges:
|
|
params = [0]
|
|
for p in params:
|
|
if param_ranges:
|
|
p = (n,) + tuple(p)
|
|
else:
|
|
p = (n,)
|
|
x = x_range[0] + (x_range[1] - x_range[0])*np.random.rand(nx)
|
|
x[0] = x_range[0] # always include domain start point
|
|
x[1] = x_range[1] # always include domain end point
|
|
kw = dict(sig=(len(p)+1)*'d'+'->d')
|
|
z = np.c_[np.tile(p, (nx,1)), x, func(*(p + (x,)), **kw)]
|
|
dataset.append(z)
|
|
|
|
dataset = np.concatenate(dataset, axis=0)
|
|
|
|
def polyfunc(*p):
|
|
p = (p[0].astype(int),) + p[1:]
|
|
kw = dict(sig='l'+(len(p)-1)*'d'+'->d')
|
|
return func(*p, **kw)
|
|
|
|
with np.errstate(all='raise'):
|
|
ds = FuncData(polyfunc, dataset, list(range(len(param_ranges)+2)), -1,
|
|
rtol=rtol)
|
|
ds.check()
|
|
|
|
def test_jacobi(self):
|
|
self.check_poly(_ufuncs.eval_jacobi,
|
|
param_ranges=[(-0.99, 10), (-0.99, 10)],
|
|
x_range=[-1, 1])
|
|
|
|
def test_sh_jacobi(self):
|
|
self.check_poly(_ufuncs.eval_sh_jacobi,
|
|
param_ranges=[(1, 10), (0, 1)], x_range=[0, 1])
|
|
|
|
def test_gegenbauer(self):
|
|
self.check_poly(_ufuncs.eval_gegenbauer,
|
|
param_ranges=[(-0.499, 10)], x_range=[-1, 1])
|
|
|
|
def test_chebyt(self):
|
|
self.check_poly(_ufuncs.eval_chebyt,
|
|
param_ranges=[], x_range=[-1, 1])
|
|
|
|
def test_chebyu(self):
|
|
self.check_poly(_ufuncs.eval_chebyu,
|
|
param_ranges=[], x_range=[-1, 1])
|
|
|
|
def test_chebys(self):
|
|
self.check_poly(_ufuncs.eval_chebys,
|
|
param_ranges=[], x_range=[-2, 2])
|
|
|
|
def test_chebyc(self):
|
|
self.check_poly(_ufuncs.eval_chebyc,
|
|
param_ranges=[], x_range=[-2, 2])
|
|
|
|
def test_sh_chebyt(self):
|
|
self.check_poly(_ufuncs.eval_sh_chebyt,
|
|
param_ranges=[], x_range=[0, 1])
|
|
|
|
def test_sh_chebyu(self):
|
|
self.check_poly(_ufuncs.eval_sh_chebyu,
|
|
param_ranges=[], x_range=[0, 1])
|
|
|
|
def test_legendre(self):
|
|
self.check_poly(_ufuncs.eval_legendre,
|
|
param_ranges=[], x_range=[-1, 1])
|
|
|
|
def test_sh_legendre(self):
|
|
self.check_poly(_ufuncs.eval_sh_legendre,
|
|
param_ranges=[], x_range=[0, 1])
|
|
|
|
def test_genlaguerre(self):
|
|
self.check_poly(_ufuncs.eval_genlaguerre,
|
|
param_ranges=[(-0.99, 10)], x_range=[0, 100])
|
|
|
|
def test_laguerre(self):
|
|
self.check_poly(_ufuncs.eval_laguerre,
|
|
param_ranges=[], x_range=[0, 100])
|
|
|
|
def test_hermite(self):
|
|
v = _ufuncs.eval_hermite(70, 1.0)
|
|
a = -1.457076485701412e60
|
|
assert_allclose(v, a)
|
|
|
|
|
|
def test_hermite_domain():
|
|
# Regression test for gh-11091.
|
|
assert np.isnan(_ufuncs.eval_hermite(-1, 1.0))
|
|
assert np.isnan(_ufuncs.eval_hermitenorm(-1, 1.0))
|
|
|
|
|
|
@pytest.mark.parametrize("n", [0, 1, 2])
|
|
@pytest.mark.parametrize("x", [0, 1, np.nan])
|
|
def test_hermite_nan(n, x):
|
|
# Regression test for gh-11369.
|
|
assert np.isnan(_ufuncs.eval_hermite(n, x)) == np.any(np.isnan([n, x]))
|
|
assert np.isnan(_ufuncs.eval_hermitenorm(n, x)) == np.any(np.isnan([n, x]))
|
|
|
|
|
|
@pytest.mark.parametrize('n', [0, 1, 2, 3.2])
|
|
@pytest.mark.parametrize('alpha', [1, np.nan])
|
|
@pytest.mark.parametrize('x', [2, np.nan])
|
|
def test_genlaguerre_nan(n, alpha, x):
|
|
# Regression test for gh-11361.
|
|
nan_laguerre = np.isnan(_ufuncs.eval_genlaguerre(n, alpha, x))
|
|
nan_arg = np.any(np.isnan([n, alpha, x]))
|
|
assert nan_laguerre == nan_arg
|
|
|
|
|
|
@pytest.mark.parametrize('n', [0, 1, 2, 3.2])
|
|
@pytest.mark.parametrize('alpha', [0.0, 1, np.nan])
|
|
@pytest.mark.parametrize('x', [1e-6, 2, np.nan])
|
|
def test_gegenbauer_nan(n, alpha, x):
|
|
# Regression test for gh-11370.
|
|
nan_gegenbauer = np.isnan(_ufuncs.eval_gegenbauer(n, alpha, x))
|
|
nan_arg = np.any(np.isnan([n, alpha, x]))
|
|
assert nan_gegenbauer == nan_arg
|