268 lines
9.0 KiB
Python
268 lines
9.0 KiB
Python
|
import string
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas.util._test_decorators as td
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core.arrays.sparse import (
|
||
|
SparseArray,
|
||
|
SparseDtype,
|
||
|
)
|
||
|
|
||
|
|
||
|
class TestSeriesAccessor:
|
||
|
def test_to_dense(self):
|
||
|
ser = pd.Series([0, 1, 0, 10], dtype="Sparse[int64]")
|
||
|
result = ser.sparse.to_dense()
|
||
|
expected = pd.Series([0, 1, 0, 10])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("attr", ["npoints", "density", "fill_value", "sp_values"])
|
||
|
def test_get_attributes(self, attr):
|
||
|
arr = SparseArray([0, 1])
|
||
|
ser = pd.Series(arr)
|
||
|
|
||
|
result = getattr(ser.sparse, attr)
|
||
|
expected = getattr(arr, attr)
|
||
|
assert result == expected
|
||
|
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_from_coo(self):
|
||
|
import scipy.sparse
|
||
|
|
||
|
row = [0, 3, 1, 0]
|
||
|
col = [0, 3, 1, 2]
|
||
|
data = [4, 5, 7, 9]
|
||
|
# TODO(scipy#13585): Remove dtype when scipy is fixed
|
||
|
# https://github.com/scipy/scipy/issues/13585
|
||
|
sp_array = scipy.sparse.coo_matrix((data, (row, col)), dtype="int")
|
||
|
result = pd.Series.sparse.from_coo(sp_array)
|
||
|
|
||
|
index = pd.MultiIndex.from_arrays(
|
||
|
[
|
||
|
np.array([0, 0, 1, 3], dtype=np.int32),
|
||
|
np.array([0, 2, 1, 3], dtype=np.int32),
|
||
|
],
|
||
|
)
|
||
|
expected = pd.Series([4, 9, 7, 5], index=index, dtype="Sparse[int]")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
@td.skip_if_no_scipy
|
||
|
@pytest.mark.parametrize(
|
||
|
"sort_labels, expected_rows, expected_cols, expected_values_pos",
|
||
|
[
|
||
|
(
|
||
|
False,
|
||
|
[("b", 2), ("a", 2), ("b", 1), ("a", 1)],
|
||
|
[("z", 1), ("z", 2), ("x", 2), ("z", 0)],
|
||
|
{1: (1, 0), 3: (3, 3)},
|
||
|
),
|
||
|
(
|
||
|
True,
|
||
|
[("a", 1), ("a", 2), ("b", 1), ("b", 2)],
|
||
|
[("x", 2), ("z", 0), ("z", 1), ("z", 2)],
|
||
|
{1: (1, 2), 3: (0, 1)},
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_to_coo(
|
||
|
self, sort_labels, expected_rows, expected_cols, expected_values_pos
|
||
|
):
|
||
|
import scipy.sparse
|
||
|
|
||
|
values = SparseArray([0, np.nan, 1, 0, None, 3], fill_value=0)
|
||
|
index = pd.MultiIndex.from_tuples(
|
||
|
[
|
||
|
("b", 2, "z", 1),
|
||
|
("a", 2, "z", 2),
|
||
|
("a", 2, "z", 1),
|
||
|
("a", 2, "x", 2),
|
||
|
("b", 1, "z", 1),
|
||
|
("a", 1, "z", 0),
|
||
|
]
|
||
|
)
|
||
|
ss = pd.Series(values, index=index)
|
||
|
|
||
|
expected_A = np.zeros((4, 4))
|
||
|
for value, (row, col) in expected_values_pos.items():
|
||
|
expected_A[row, col] = value
|
||
|
|
||
|
A, rows, cols = ss.sparse.to_coo(
|
||
|
row_levels=(0, 1), column_levels=(2, 3), sort_labels=sort_labels
|
||
|
)
|
||
|
assert isinstance(A, scipy.sparse.coo_matrix)
|
||
|
tm.assert_numpy_array_equal(A.toarray(), expected_A)
|
||
|
assert rows == expected_rows
|
||
|
assert cols == expected_cols
|
||
|
|
||
|
def test_non_sparse_raises(self):
|
||
|
ser = pd.Series([1, 2, 3])
|
||
|
with pytest.raises(AttributeError, match=".sparse"):
|
||
|
ser.sparse.density
|
||
|
|
||
|
|
||
|
class TestFrameAccessor:
|
||
|
def test_accessor_raises(self):
|
||
|
df = pd.DataFrame({"A": [0, 1]})
|
||
|
with pytest.raises(AttributeError, match="sparse"):
|
||
|
df.sparse
|
||
|
|
||
|
@pytest.mark.parametrize("format", ["csc", "csr", "coo"])
|
||
|
@pytest.mark.parametrize("labels", [None, list(string.ascii_letters[:10])])
|
||
|
@pytest.mark.parametrize("dtype", ["float64", "int64"])
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_from_spmatrix(self, format, labels, dtype):
|
||
|
import scipy.sparse
|
||
|
|
||
|
sp_dtype = SparseDtype(dtype, np.array(0, dtype=dtype).item())
|
||
|
|
||
|
mat = scipy.sparse.eye(10, format=format, dtype=dtype)
|
||
|
result = pd.DataFrame.sparse.from_spmatrix(mat, index=labels, columns=labels)
|
||
|
expected = pd.DataFrame(
|
||
|
np.eye(10, dtype=dtype), index=labels, columns=labels
|
||
|
).astype(sp_dtype)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("format", ["csc", "csr", "coo"])
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_from_spmatrix_including_explicit_zero(self, format):
|
||
|
import scipy.sparse
|
||
|
|
||
|
mat = scipy.sparse.random(10, 2, density=0.5, format=format)
|
||
|
mat.data[0] = 0
|
||
|
result = pd.DataFrame.sparse.from_spmatrix(mat)
|
||
|
dtype = SparseDtype("float64", 0.0)
|
||
|
expected = pd.DataFrame(mat.todense()).astype(dtype)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"columns",
|
||
|
[["a", "b"], pd.MultiIndex.from_product([["A"], ["a", "b"]]), ["a", "a"]],
|
||
|
)
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_from_spmatrix_columns(self, columns):
|
||
|
import scipy.sparse
|
||
|
|
||
|
dtype = SparseDtype("float64", 0.0)
|
||
|
|
||
|
mat = scipy.sparse.random(10, 2, density=0.5)
|
||
|
result = pd.DataFrame.sparse.from_spmatrix(mat, columns=columns)
|
||
|
expected = pd.DataFrame(mat.toarray(), columns=columns).astype(dtype)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"colnames", [("A", "B"), (1, 2), (1, pd.NA), (0.1, 0.2), ("x", "x"), (0, 0)]
|
||
|
)
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_to_coo(self, colnames):
|
||
|
import scipy.sparse
|
||
|
|
||
|
df = pd.DataFrame(
|
||
|
{colnames[0]: [0, 1, 0], colnames[1]: [1, 0, 0]}, dtype="Sparse[int64, 0]"
|
||
|
)
|
||
|
result = df.sparse.to_coo()
|
||
|
expected = scipy.sparse.coo_matrix(np.asarray(df))
|
||
|
assert (result != expected).nnz == 0
|
||
|
|
||
|
@pytest.mark.parametrize("fill_value", [1, np.nan])
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_to_coo_nonzero_fill_val_raises(self, fill_value):
|
||
|
df = pd.DataFrame(
|
||
|
{
|
||
|
"A": SparseArray(
|
||
|
[fill_value, fill_value, fill_value, 2], fill_value=fill_value
|
||
|
),
|
||
|
"B": SparseArray(
|
||
|
[fill_value, 2, fill_value, fill_value], fill_value=fill_value
|
||
|
),
|
||
|
}
|
||
|
)
|
||
|
with pytest.raises(ValueError, match="fill value must be 0"):
|
||
|
df.sparse.to_coo()
|
||
|
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_to_coo_midx_categorical(self):
|
||
|
# GH#50996
|
||
|
import scipy.sparse
|
||
|
|
||
|
midx = pd.MultiIndex.from_arrays(
|
||
|
[
|
||
|
pd.CategoricalIndex(list("ab"), name="x"),
|
||
|
pd.CategoricalIndex([0, 1], name="y"),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
ser = pd.Series(1, index=midx, dtype="Sparse[int]")
|
||
|
result = ser.sparse.to_coo(row_levels=["x"], column_levels=["y"])[0]
|
||
|
expected = scipy.sparse.coo_matrix(
|
||
|
(np.array([1, 1]), (np.array([0, 1]), np.array([0, 1]))), shape=(2, 2)
|
||
|
)
|
||
|
assert (result != expected).nnz == 0
|
||
|
|
||
|
def test_to_dense(self):
|
||
|
df = pd.DataFrame(
|
||
|
{
|
||
|
"A": SparseArray([1, 0], dtype=SparseDtype("int64", 0)),
|
||
|
"B": SparseArray([1, 0], dtype=SparseDtype("int64", 1)),
|
||
|
"C": SparseArray([1.0, 0.0], dtype=SparseDtype("float64", 0.0)),
|
||
|
},
|
||
|
index=["b", "a"],
|
||
|
)
|
||
|
result = df.sparse.to_dense()
|
||
|
expected = pd.DataFrame(
|
||
|
{"A": [1, 0], "B": [1, 0], "C": [1.0, 0.0]}, index=["b", "a"]
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_density(self):
|
||
|
df = pd.DataFrame(
|
||
|
{
|
||
|
"A": SparseArray([1, 0, 2, 1], fill_value=0),
|
||
|
"B": SparseArray([0, 1, 1, 1], fill_value=0),
|
||
|
}
|
||
|
)
|
||
|
res = df.sparse.density
|
||
|
expected = 0.75
|
||
|
assert res == expected
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", ["int64", "float64"])
|
||
|
@pytest.mark.parametrize("dense_index", [True, False])
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_series_from_coo(self, dtype, dense_index):
|
||
|
import scipy.sparse
|
||
|
|
||
|
A = scipy.sparse.eye(3, format="coo", dtype=dtype)
|
||
|
result = pd.Series.sparse.from_coo(A, dense_index=dense_index)
|
||
|
|
||
|
index = pd.MultiIndex.from_tuples(
|
||
|
[
|
||
|
np.array([0, 0], dtype=np.int32),
|
||
|
np.array([1, 1], dtype=np.int32),
|
||
|
np.array([2, 2], dtype=np.int32),
|
||
|
],
|
||
|
)
|
||
|
expected = pd.Series(SparseArray(np.array([1, 1, 1], dtype=dtype)), index=index)
|
||
|
if dense_index:
|
||
|
expected = expected.reindex(pd.MultiIndex.from_product(index.levels))
|
||
|
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
@td.skip_if_no_scipy
|
||
|
def test_series_from_coo_incorrect_format_raises(self):
|
||
|
# gh-26554
|
||
|
import scipy.sparse
|
||
|
|
||
|
m = scipy.sparse.csr_matrix(np.array([[0, 1], [0, 0]]))
|
||
|
with pytest.raises(
|
||
|
TypeError, match="Expected coo_matrix. Got csr_matrix instead."
|
||
|
):
|
||
|
pd.Series.sparse.from_coo(m)
|
||
|
|
||
|
def test_with_column_named_sparse(self):
|
||
|
# https://github.com/pandas-dev/pandas/issues/30758
|
||
|
df = pd.DataFrame({"sparse": pd.arrays.SparseArray([1, 2])})
|
||
|
assert isinstance(df.sparse, pd.core.arrays.sparse.accessor.SparseFrameAccessor)
|