Inzynierka/Lib/site-packages/pandas/tests/arrays/sparse/test_accessor.py
2023-06-02 12:51:02 +02:00

268 lines
9.0 KiB
Python

import string
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays.sparse import (
SparseArray,
SparseDtype,
)
class TestSeriesAccessor:
def test_to_dense(self):
ser = pd.Series([0, 1, 0, 10], dtype="Sparse[int64]")
result = ser.sparse.to_dense()
expected = pd.Series([0, 1, 0, 10])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("attr", ["npoints", "density", "fill_value", "sp_values"])
def test_get_attributes(self, attr):
arr = SparseArray([0, 1])
ser = pd.Series(arr)
result = getattr(ser.sparse, attr)
expected = getattr(arr, attr)
assert result == expected
@td.skip_if_no_scipy
def test_from_coo(self):
import scipy.sparse
row = [0, 3, 1, 0]
col = [0, 3, 1, 2]
data = [4, 5, 7, 9]
# TODO(scipy#13585): Remove dtype when scipy is fixed
# https://github.com/scipy/scipy/issues/13585
sp_array = scipy.sparse.coo_matrix((data, (row, col)), dtype="int")
result = pd.Series.sparse.from_coo(sp_array)
index = pd.MultiIndex.from_arrays(
[
np.array([0, 0, 1, 3], dtype=np.int32),
np.array([0, 2, 1, 3], dtype=np.int32),
],
)
expected = pd.Series([4, 9, 7, 5], index=index, dtype="Sparse[int]")
tm.assert_series_equal(result, expected)
@td.skip_if_no_scipy
@pytest.mark.parametrize(
"sort_labels, expected_rows, expected_cols, expected_values_pos",
[
(
False,
[("b", 2), ("a", 2), ("b", 1), ("a", 1)],
[("z", 1), ("z", 2), ("x", 2), ("z", 0)],
{1: (1, 0), 3: (3, 3)},
),
(
True,
[("a", 1), ("a", 2), ("b", 1), ("b", 2)],
[("x", 2), ("z", 0), ("z", 1), ("z", 2)],
{1: (1, 2), 3: (0, 1)},
),
],
)
def test_to_coo(
self, sort_labels, expected_rows, expected_cols, expected_values_pos
):
import scipy.sparse
values = SparseArray([0, np.nan, 1, 0, None, 3], fill_value=0)
index = pd.MultiIndex.from_tuples(
[
("b", 2, "z", 1),
("a", 2, "z", 2),
("a", 2, "z", 1),
("a", 2, "x", 2),
("b", 1, "z", 1),
("a", 1, "z", 0),
]
)
ss = pd.Series(values, index=index)
expected_A = np.zeros((4, 4))
for value, (row, col) in expected_values_pos.items():
expected_A[row, col] = value
A, rows, cols = ss.sparse.to_coo(
row_levels=(0, 1), column_levels=(2, 3), sort_labels=sort_labels
)
assert isinstance(A, scipy.sparse.coo_matrix)
tm.assert_numpy_array_equal(A.toarray(), expected_A)
assert rows == expected_rows
assert cols == expected_cols
def test_non_sparse_raises(self):
ser = pd.Series([1, 2, 3])
with pytest.raises(AttributeError, match=".sparse"):
ser.sparse.density
class TestFrameAccessor:
def test_accessor_raises(self):
df = pd.DataFrame({"A": [0, 1]})
with pytest.raises(AttributeError, match="sparse"):
df.sparse
@pytest.mark.parametrize("format", ["csc", "csr", "coo"])
@pytest.mark.parametrize("labels", [None, list(string.ascii_letters[:10])])
@pytest.mark.parametrize("dtype", ["float64", "int64"])
@td.skip_if_no_scipy
def test_from_spmatrix(self, format, labels, dtype):
import scipy.sparse
sp_dtype = SparseDtype(dtype, np.array(0, dtype=dtype).item())
mat = scipy.sparse.eye(10, format=format, dtype=dtype)
result = pd.DataFrame.sparse.from_spmatrix(mat, index=labels, columns=labels)
expected = pd.DataFrame(
np.eye(10, dtype=dtype), index=labels, columns=labels
).astype(sp_dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("format", ["csc", "csr", "coo"])
@td.skip_if_no_scipy
def test_from_spmatrix_including_explicit_zero(self, format):
import scipy.sparse
mat = scipy.sparse.random(10, 2, density=0.5, format=format)
mat.data[0] = 0
result = pd.DataFrame.sparse.from_spmatrix(mat)
dtype = SparseDtype("float64", 0.0)
expected = pd.DataFrame(mat.todense()).astype(dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"columns",
[["a", "b"], pd.MultiIndex.from_product([["A"], ["a", "b"]]), ["a", "a"]],
)
@td.skip_if_no_scipy
def test_from_spmatrix_columns(self, columns):
import scipy.sparse
dtype = SparseDtype("float64", 0.0)
mat = scipy.sparse.random(10, 2, density=0.5)
result = pd.DataFrame.sparse.from_spmatrix(mat, columns=columns)
expected = pd.DataFrame(mat.toarray(), columns=columns).astype(dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"colnames", [("A", "B"), (1, 2), (1, pd.NA), (0.1, 0.2), ("x", "x"), (0, 0)]
)
@td.skip_if_no_scipy
def test_to_coo(self, colnames):
import scipy.sparse
df = pd.DataFrame(
{colnames[0]: [0, 1, 0], colnames[1]: [1, 0, 0]}, dtype="Sparse[int64, 0]"
)
result = df.sparse.to_coo()
expected = scipy.sparse.coo_matrix(np.asarray(df))
assert (result != expected).nnz == 0
@pytest.mark.parametrize("fill_value", [1, np.nan])
@td.skip_if_no_scipy
def test_to_coo_nonzero_fill_val_raises(self, fill_value):
df = pd.DataFrame(
{
"A": SparseArray(
[fill_value, fill_value, fill_value, 2], fill_value=fill_value
),
"B": SparseArray(
[fill_value, 2, fill_value, fill_value], fill_value=fill_value
),
}
)
with pytest.raises(ValueError, match="fill value must be 0"):
df.sparse.to_coo()
@td.skip_if_no_scipy
def test_to_coo_midx_categorical(self):
# GH#50996
import scipy.sparse
midx = pd.MultiIndex.from_arrays(
[
pd.CategoricalIndex(list("ab"), name="x"),
pd.CategoricalIndex([0, 1], name="y"),
]
)
ser = pd.Series(1, index=midx, dtype="Sparse[int]")
result = ser.sparse.to_coo(row_levels=["x"], column_levels=["y"])[0]
expected = scipy.sparse.coo_matrix(
(np.array([1, 1]), (np.array([0, 1]), np.array([0, 1]))), shape=(2, 2)
)
assert (result != expected).nnz == 0
def test_to_dense(self):
df = pd.DataFrame(
{
"A": SparseArray([1, 0], dtype=SparseDtype("int64", 0)),
"B": SparseArray([1, 0], dtype=SparseDtype("int64", 1)),
"C": SparseArray([1.0, 0.0], dtype=SparseDtype("float64", 0.0)),
},
index=["b", "a"],
)
result = df.sparse.to_dense()
expected = pd.DataFrame(
{"A": [1, 0], "B": [1, 0], "C": [1.0, 0.0]}, index=["b", "a"]
)
tm.assert_frame_equal(result, expected)
def test_density(self):
df = pd.DataFrame(
{
"A": SparseArray([1, 0, 2, 1], fill_value=0),
"B": SparseArray([0, 1, 1, 1], fill_value=0),
}
)
res = df.sparse.density
expected = 0.75
assert res == expected
@pytest.mark.parametrize("dtype", ["int64", "float64"])
@pytest.mark.parametrize("dense_index", [True, False])
@td.skip_if_no_scipy
def test_series_from_coo(self, dtype, dense_index):
import scipy.sparse
A = scipy.sparse.eye(3, format="coo", dtype=dtype)
result = pd.Series.sparse.from_coo(A, dense_index=dense_index)
index = pd.MultiIndex.from_tuples(
[
np.array([0, 0], dtype=np.int32),
np.array([1, 1], dtype=np.int32),
np.array([2, 2], dtype=np.int32),
],
)
expected = pd.Series(SparseArray(np.array([1, 1, 1], dtype=dtype)), index=index)
if dense_index:
expected = expected.reindex(pd.MultiIndex.from_product(index.levels))
tm.assert_series_equal(result, expected)
@td.skip_if_no_scipy
def test_series_from_coo_incorrect_format_raises(self):
# gh-26554
import scipy.sparse
m = scipy.sparse.csr_matrix(np.array([[0, 1], [0, 0]]))
with pytest.raises(
TypeError, match="Expected coo_matrix. Got csr_matrix instead."
):
pd.Series.sparse.from_coo(m)
def test_with_column_named_sparse(self):
# https://github.com/pandas-dev/pandas/issues/30758
df = pd.DataFrame({"sparse": pd.arrays.SparseArray([1, 2])})
assert isinstance(df.sparse, pd.core.arrays.sparse.accessor.SparseFrameAccessor)