172 lines
5.6 KiB
Python
172 lines
5.6 KiB
Python
|
from itertools import product
|
||
|
|
||
|
import numpy as np
|
||
|
from sklearn.utils._testing import (
|
||
|
assert_allclose,
|
||
|
assert_array_equal,
|
||
|
)
|
||
|
from scipy import linalg
|
||
|
import pytest
|
||
|
|
||
|
from sklearn import neighbors, manifold
|
||
|
from sklearn.datasets import make_blobs
|
||
|
from sklearn.manifold._locally_linear import barycenter_kneighbors_graph
|
||
|
from sklearn.utils._testing import ignore_warnings
|
||
|
|
||
|
eigen_solvers = ["dense", "arpack"]
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Test utility routines
|
||
|
def test_barycenter_kneighbors_graph(global_dtype):
|
||
|
X = np.array([[0, 1], [1.01, 1.0], [2, 0]], dtype=global_dtype)
|
||
|
|
||
|
graph = barycenter_kneighbors_graph(X, 1)
|
||
|
expected_graph = np.array(
|
||
|
[[0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype=global_dtype
|
||
|
)
|
||
|
|
||
|
assert graph.dtype == global_dtype
|
||
|
|
||
|
assert_allclose(graph.toarray(), expected_graph)
|
||
|
|
||
|
graph = barycenter_kneighbors_graph(X, 2)
|
||
|
# check that columns sum to one
|
||
|
assert_allclose(np.sum(graph.toarray(), axis=1), np.ones(3))
|
||
|
pred = np.dot(graph.toarray(), X)
|
||
|
assert linalg.norm(pred - X) / X.shape[0] < 1
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Test LLE by computing the reconstruction error on some manifolds.
|
||
|
|
||
|
|
||
|
def test_lle_simple_grid(global_dtype):
|
||
|
# note: ARPACK is numerically unstable, so this test will fail for
|
||
|
# some random seeds. We choose 42 because the tests pass.
|
||
|
# for arm64 platforms 2 makes the test fail.
|
||
|
# TODO: rewrite this test to make less sensitive to the random seed,
|
||
|
# irrespective of the platform.
|
||
|
rng = np.random.RandomState(42)
|
||
|
|
||
|
# grid of equidistant points in 2D, n_components = n_dim
|
||
|
X = np.array(list(product(range(5), repeat=2)))
|
||
|
X = X + 1e-10 * rng.uniform(size=X.shape)
|
||
|
X = X.astype(global_dtype, copy=False)
|
||
|
|
||
|
n_components = 2
|
||
|
clf = manifold.LocallyLinearEmbedding(
|
||
|
n_neighbors=5, n_components=n_components, random_state=rng
|
||
|
)
|
||
|
tol = 0.1
|
||
|
|
||
|
N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
|
||
|
reconstruction_error = linalg.norm(np.dot(N, X) - X, "fro")
|
||
|
assert reconstruction_error < tol
|
||
|
|
||
|
for solver in eigen_solvers:
|
||
|
clf.set_params(eigen_solver=solver)
|
||
|
clf.fit(X)
|
||
|
assert clf.embedding_.shape[1] == n_components
|
||
|
reconstruction_error = (
|
||
|
linalg.norm(np.dot(N, clf.embedding_) - clf.embedding_, "fro") ** 2
|
||
|
)
|
||
|
|
||
|
assert reconstruction_error < tol
|
||
|
assert_allclose(clf.reconstruction_error_, reconstruction_error, atol=1e-1)
|
||
|
|
||
|
# re-embed a noisy version of X using the transform method
|
||
|
noise = rng.randn(*X.shape).astype(global_dtype, copy=False) / 100
|
||
|
X_reembedded = clf.transform(X + noise)
|
||
|
assert linalg.norm(X_reembedded - clf.embedding_) < tol
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("method", ["standard", "hessian", "modified", "ltsa"])
|
||
|
@pytest.mark.parametrize("solver", eigen_solvers)
|
||
|
def test_lle_manifold(global_dtype, method, solver):
|
||
|
rng = np.random.RandomState(0)
|
||
|
# similar test on a slightly more complex manifold
|
||
|
X = np.array(list(product(np.arange(18), repeat=2)))
|
||
|
X = np.c_[X, X[:, 0] ** 2 / 18]
|
||
|
X = X + 1e-10 * rng.uniform(size=X.shape)
|
||
|
X = X.astype(global_dtype, copy=False)
|
||
|
n_components = 2
|
||
|
|
||
|
clf = manifold.LocallyLinearEmbedding(
|
||
|
n_neighbors=6, n_components=n_components, method=method, random_state=0
|
||
|
)
|
||
|
tol = 1.5 if method == "standard" else 3
|
||
|
|
||
|
N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
|
||
|
reconstruction_error = linalg.norm(np.dot(N, X) - X)
|
||
|
assert reconstruction_error < tol
|
||
|
|
||
|
clf.set_params(eigen_solver=solver)
|
||
|
clf.fit(X)
|
||
|
assert clf.embedding_.shape[1] == n_components
|
||
|
reconstruction_error = (
|
||
|
linalg.norm(np.dot(N, clf.embedding_) - clf.embedding_, "fro") ** 2
|
||
|
)
|
||
|
details = "solver: %s, method: %s" % (solver, method)
|
||
|
assert reconstruction_error < tol, details
|
||
|
assert (
|
||
|
np.abs(clf.reconstruction_error_ - reconstruction_error)
|
||
|
< tol * reconstruction_error
|
||
|
), details
|
||
|
|
||
|
|
||
|
def test_pipeline():
|
||
|
# check that LocallyLinearEmbedding works fine as a Pipeline
|
||
|
# only checks that no error is raised.
|
||
|
# TODO check that it actually does something useful
|
||
|
from sklearn import pipeline, datasets
|
||
|
|
||
|
X, y = datasets.make_blobs(random_state=0)
|
||
|
clf = pipeline.Pipeline(
|
||
|
[
|
||
|
("filter", manifold.LocallyLinearEmbedding(random_state=0)),
|
||
|
("clf", neighbors.KNeighborsClassifier()),
|
||
|
]
|
||
|
)
|
||
|
clf.fit(X, y)
|
||
|
assert 0.9 < clf.score(X, y)
|
||
|
|
||
|
|
||
|
# Test the error raised when the weight matrix is singular
|
||
|
def test_singular_matrix():
|
||
|
M = np.ones((10, 3))
|
||
|
f = ignore_warnings
|
||
|
with pytest.raises(ValueError):
|
||
|
f(
|
||
|
manifold.locally_linear_embedding(
|
||
|
M,
|
||
|
n_neighbors=2,
|
||
|
n_components=1,
|
||
|
method="standard",
|
||
|
eigen_solver="arpack",
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
# regression test for #6033
|
||
|
def test_integer_input():
|
||
|
rand = np.random.RandomState(0)
|
||
|
X = rand.randint(0, 100, size=(20, 3))
|
||
|
|
||
|
for method in ["standard", "hessian", "modified", "ltsa"]:
|
||
|
clf = manifold.LocallyLinearEmbedding(method=method, n_neighbors=10)
|
||
|
clf.fit(X) # this previously raised a TypeError
|
||
|
|
||
|
|
||
|
def test_get_feature_names_out():
|
||
|
"""Check get_feature_names_out for LocallyLinearEmbedding."""
|
||
|
X, y = make_blobs(random_state=0, n_features=4)
|
||
|
n_components = 2
|
||
|
|
||
|
iso = manifold.LocallyLinearEmbedding(n_components=n_components)
|
||
|
iso.fit(X)
|
||
|
names = iso.get_feature_names_out()
|
||
|
assert_array_equal(
|
||
|
[f"locallylinearembedding{i}" for i in range(n_components)], names
|
||
|
)
|