Inzynierka/Lib/site-packages/sklearn/manifold/tests/test_locally_linear.py
2023-06-02 12:51:02 +02:00

172 lines
5.6 KiB
Python

from itertools import product
import numpy as np
from sklearn.utils._testing import (
assert_allclose,
assert_array_equal,
)
from scipy import linalg
import pytest
from sklearn import neighbors, manifold
from sklearn.datasets import make_blobs
from sklearn.manifold._locally_linear import barycenter_kneighbors_graph
from sklearn.utils._testing import ignore_warnings
eigen_solvers = ["dense", "arpack"]
# ----------------------------------------------------------------------
# Test utility routines
def test_barycenter_kneighbors_graph(global_dtype):
X = np.array([[0, 1], [1.01, 1.0], [2, 0]], dtype=global_dtype)
graph = barycenter_kneighbors_graph(X, 1)
expected_graph = np.array(
[[0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype=global_dtype
)
assert graph.dtype == global_dtype
assert_allclose(graph.toarray(), expected_graph)
graph = barycenter_kneighbors_graph(X, 2)
# check that columns sum to one
assert_allclose(np.sum(graph.toarray(), axis=1), np.ones(3))
pred = np.dot(graph.toarray(), X)
assert linalg.norm(pred - X) / X.shape[0] < 1
# ----------------------------------------------------------------------
# Test LLE by computing the reconstruction error on some manifolds.
def test_lle_simple_grid(global_dtype):
# note: ARPACK is numerically unstable, so this test will fail for
# some random seeds. We choose 42 because the tests pass.
# for arm64 platforms 2 makes the test fail.
# TODO: rewrite this test to make less sensitive to the random seed,
# irrespective of the platform.
rng = np.random.RandomState(42)
# grid of equidistant points in 2D, n_components = n_dim
X = np.array(list(product(range(5), repeat=2)))
X = X + 1e-10 * rng.uniform(size=X.shape)
X = X.astype(global_dtype, copy=False)
n_components = 2
clf = manifold.LocallyLinearEmbedding(
n_neighbors=5, n_components=n_components, random_state=rng
)
tol = 0.1
N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
reconstruction_error = linalg.norm(np.dot(N, X) - X, "fro")
assert reconstruction_error < tol
for solver in eigen_solvers:
clf.set_params(eigen_solver=solver)
clf.fit(X)
assert clf.embedding_.shape[1] == n_components
reconstruction_error = (
linalg.norm(np.dot(N, clf.embedding_) - clf.embedding_, "fro") ** 2
)
assert reconstruction_error < tol
assert_allclose(clf.reconstruction_error_, reconstruction_error, atol=1e-1)
# re-embed a noisy version of X using the transform method
noise = rng.randn(*X.shape).astype(global_dtype, copy=False) / 100
X_reembedded = clf.transform(X + noise)
assert linalg.norm(X_reembedded - clf.embedding_) < tol
@pytest.mark.parametrize("method", ["standard", "hessian", "modified", "ltsa"])
@pytest.mark.parametrize("solver", eigen_solvers)
def test_lle_manifold(global_dtype, method, solver):
rng = np.random.RandomState(0)
# similar test on a slightly more complex manifold
X = np.array(list(product(np.arange(18), repeat=2)))
X = np.c_[X, X[:, 0] ** 2 / 18]
X = X + 1e-10 * rng.uniform(size=X.shape)
X = X.astype(global_dtype, copy=False)
n_components = 2
clf = manifold.LocallyLinearEmbedding(
n_neighbors=6, n_components=n_components, method=method, random_state=0
)
tol = 1.5 if method == "standard" else 3
N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray()
reconstruction_error = linalg.norm(np.dot(N, X) - X)
assert reconstruction_error < tol
clf.set_params(eigen_solver=solver)
clf.fit(X)
assert clf.embedding_.shape[1] == n_components
reconstruction_error = (
linalg.norm(np.dot(N, clf.embedding_) - clf.embedding_, "fro") ** 2
)
details = "solver: %s, method: %s" % (solver, method)
assert reconstruction_error < tol, details
assert (
np.abs(clf.reconstruction_error_ - reconstruction_error)
< tol * reconstruction_error
), details
def test_pipeline():
# check that LocallyLinearEmbedding works fine as a Pipeline
# only checks that no error is raised.
# TODO check that it actually does something useful
from sklearn import pipeline, datasets
X, y = datasets.make_blobs(random_state=0)
clf = pipeline.Pipeline(
[
("filter", manifold.LocallyLinearEmbedding(random_state=0)),
("clf", neighbors.KNeighborsClassifier()),
]
)
clf.fit(X, y)
assert 0.9 < clf.score(X, y)
# Test the error raised when the weight matrix is singular
def test_singular_matrix():
M = np.ones((10, 3))
f = ignore_warnings
with pytest.raises(ValueError):
f(
manifold.locally_linear_embedding(
M,
n_neighbors=2,
n_components=1,
method="standard",
eigen_solver="arpack",
)
)
# regression test for #6033
def test_integer_input():
rand = np.random.RandomState(0)
X = rand.randint(0, 100, size=(20, 3))
for method in ["standard", "hessian", "modified", "ltsa"]:
clf = manifold.LocallyLinearEmbedding(method=method, n_neighbors=10)
clf.fit(X) # this previously raised a TypeError
def test_get_feature_names_out():
"""Check get_feature_names_out for LocallyLinearEmbedding."""
X, y = make_blobs(random_state=0, n_features=4)
n_components = 2
iso = manifold.LocallyLinearEmbedding(n_components=n_components)
iso.fit(X)
names = iso.get_feature_names_out()
assert_array_equal(
[f"locallylinearembedding{i}" for i in range(n_components)], names
)