2596 lines
84 KiB
Python
2596 lines
84 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from datetime import (
|
||
|
datetime,
|
||
|
time,
|
||
|
timedelta,
|
||
|
tzinfo,
|
||
|
)
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
Iterator,
|
||
|
cast,
|
||
|
)
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._libs import (
|
||
|
lib,
|
||
|
tslib,
|
||
|
)
|
||
|
from pandas._libs.tslibs import (
|
||
|
BaseOffset,
|
||
|
NaT,
|
||
|
NaTType,
|
||
|
Resolution,
|
||
|
Timestamp,
|
||
|
astype_overflowsafe,
|
||
|
fields,
|
||
|
get_resolution,
|
||
|
get_supported_reso,
|
||
|
get_unit_from_dtype,
|
||
|
ints_to_pydatetime,
|
||
|
is_date_array_normalized,
|
||
|
is_supported_unit,
|
||
|
is_unitless,
|
||
|
normalize_i8_timestamps,
|
||
|
npy_unit_to_abbrev,
|
||
|
timezones,
|
||
|
to_offset,
|
||
|
tz_convert_from_utc,
|
||
|
tzconversion,
|
||
|
)
|
||
|
from pandas._libs.tslibs.dtypes import abbrev_to_npy_unit
|
||
|
from pandas._typing import (
|
||
|
DateTimeErrorChoices,
|
||
|
IntervalClosedType,
|
||
|
TimeAmbiguous,
|
||
|
TimeNonexistent,
|
||
|
npt,
|
||
|
)
|
||
|
from pandas.errors import PerformanceWarning
|
||
|
from pandas.util._exceptions import find_stack_level
|
||
|
from pandas.util._validators import validate_inclusive
|
||
|
|
||
|
from pandas.core.dtypes.common import (
|
||
|
DT64NS_DTYPE,
|
||
|
INT64_DTYPE,
|
||
|
is_bool_dtype,
|
||
|
is_datetime64_any_dtype,
|
||
|
is_datetime64_dtype,
|
||
|
is_datetime64tz_dtype,
|
||
|
is_dtype_equal,
|
||
|
is_extension_array_dtype,
|
||
|
is_float_dtype,
|
||
|
is_object_dtype,
|
||
|
is_period_dtype,
|
||
|
is_sparse,
|
||
|
is_string_dtype,
|
||
|
is_timedelta64_dtype,
|
||
|
pandas_dtype,
|
||
|
)
|
||
|
from pandas.core.dtypes.dtypes import (
|
||
|
DatetimeTZDtype,
|
||
|
ExtensionDtype,
|
||
|
)
|
||
|
from pandas.core.dtypes.missing import isna
|
||
|
|
||
|
from pandas.core.arrays import datetimelike as dtl
|
||
|
from pandas.core.arrays._ranges import generate_regular_range
|
||
|
import pandas.core.common as com
|
||
|
|
||
|
from pandas.tseries.frequencies import get_period_alias
|
||
|
from pandas.tseries.offsets import (
|
||
|
Day,
|
||
|
Tick,
|
||
|
)
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from pandas import DataFrame
|
||
|
from pandas.core.arrays import PeriodArray
|
||
|
|
||
|
_midnight = time(0, 0)
|
||
|
|
||
|
|
||
|
def tz_to_dtype(tz: tzinfo | None, unit: str = "ns"):
|
||
|
"""
|
||
|
Return a datetime64[ns] dtype appropriate for the given timezone.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tz : tzinfo or None
|
||
|
unit : str, default "ns"
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
np.dtype or Datetime64TZDType
|
||
|
"""
|
||
|
if tz is None:
|
||
|
return np.dtype(f"M8[{unit}]")
|
||
|
else:
|
||
|
return DatetimeTZDtype(tz=tz, unit=unit)
|
||
|
|
||
|
|
||
|
def _field_accessor(name: str, field: str, docstring=None):
|
||
|
def f(self):
|
||
|
values = self._local_timestamps()
|
||
|
|
||
|
if field in self._bool_ops:
|
||
|
result: np.ndarray
|
||
|
|
||
|
if field.endswith(("start", "end")):
|
||
|
freq = self.freq
|
||
|
month_kw = 12
|
||
|
if freq:
|
||
|
kwds = freq.kwds
|
||
|
month_kw = kwds.get("startingMonth", kwds.get("month", 12))
|
||
|
|
||
|
result = fields.get_start_end_field(
|
||
|
values, field, self.freqstr, month_kw, reso=self._creso
|
||
|
)
|
||
|
else:
|
||
|
result = fields.get_date_field(values, field, reso=self._creso)
|
||
|
|
||
|
# these return a boolean by-definition
|
||
|
return result
|
||
|
|
||
|
if field in self._object_ops:
|
||
|
result = fields.get_date_name_field(values, field, reso=self._creso)
|
||
|
result = self._maybe_mask_results(result, fill_value=None)
|
||
|
|
||
|
else:
|
||
|
result = fields.get_date_field(values, field, reso=self._creso)
|
||
|
result = self._maybe_mask_results(
|
||
|
result, fill_value=None, convert="float64"
|
||
|
)
|
||
|
|
||
|
return result
|
||
|
|
||
|
f.__name__ = name
|
||
|
f.__doc__ = docstring
|
||
|
return property(f)
|
||
|
|
||
|
|
||
|
class DatetimeArray(dtl.TimelikeOps, dtl.DatelikeOps):
|
||
|
"""
|
||
|
Pandas ExtensionArray for tz-naive or tz-aware datetime data.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
DatetimeArray is currently experimental, and its API may change
|
||
|
without warning. In particular, :attr:`DatetimeArray.dtype` is
|
||
|
expected to change to always be an instance of an ``ExtensionDtype``
|
||
|
subclass.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
values : Series, Index, DatetimeArray, ndarray
|
||
|
The datetime data.
|
||
|
|
||
|
For DatetimeArray `values` (or a Series or Index boxing one),
|
||
|
`dtype` and `freq` will be extracted from `values`.
|
||
|
|
||
|
dtype : numpy.dtype or DatetimeTZDtype
|
||
|
Note that the only NumPy dtype allowed is 'datetime64[ns]'.
|
||
|
freq : str or Offset, optional
|
||
|
The frequency.
|
||
|
copy : bool, default False
|
||
|
Whether to copy the underlying array of values.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
None
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
None
|
||
|
"""
|
||
|
|
||
|
_typ = "datetimearray"
|
||
|
_internal_fill_value = np.datetime64("NaT", "ns")
|
||
|
_recognized_scalars = (datetime, np.datetime64)
|
||
|
_is_recognized_dtype = is_datetime64_any_dtype
|
||
|
_infer_matches = ("datetime", "datetime64", "date")
|
||
|
|
||
|
@property
|
||
|
def _scalar_type(self) -> type[Timestamp]:
|
||
|
return Timestamp
|
||
|
|
||
|
# define my properties & methods for delegation
|
||
|
_bool_ops: list[str] = [
|
||
|
"is_month_start",
|
||
|
"is_month_end",
|
||
|
"is_quarter_start",
|
||
|
"is_quarter_end",
|
||
|
"is_year_start",
|
||
|
"is_year_end",
|
||
|
"is_leap_year",
|
||
|
]
|
||
|
_object_ops: list[str] = ["freq", "tz"]
|
||
|
_field_ops: list[str] = [
|
||
|
"year",
|
||
|
"month",
|
||
|
"day",
|
||
|
"hour",
|
||
|
"minute",
|
||
|
"second",
|
||
|
"weekday",
|
||
|
"dayofweek",
|
||
|
"day_of_week",
|
||
|
"dayofyear",
|
||
|
"day_of_year",
|
||
|
"quarter",
|
||
|
"days_in_month",
|
||
|
"daysinmonth",
|
||
|
"microsecond",
|
||
|
"nanosecond",
|
||
|
]
|
||
|
_other_ops: list[str] = ["date", "time", "timetz"]
|
||
|
_datetimelike_ops: list[str] = (
|
||
|
_field_ops + _object_ops + _bool_ops + _other_ops + ["unit"]
|
||
|
)
|
||
|
_datetimelike_methods: list[str] = [
|
||
|
"to_period",
|
||
|
"tz_localize",
|
||
|
"tz_convert",
|
||
|
"normalize",
|
||
|
"strftime",
|
||
|
"round",
|
||
|
"floor",
|
||
|
"ceil",
|
||
|
"month_name",
|
||
|
"day_name",
|
||
|
"as_unit",
|
||
|
]
|
||
|
|
||
|
# ndim is inherited from ExtensionArray, must exist to ensure
|
||
|
# Timestamp.__richcmp__(DateTimeArray) operates pointwise
|
||
|
|
||
|
# ensure that operations with numpy arrays defer to our implementation
|
||
|
__array_priority__ = 1000
|
||
|
|
||
|
# -----------------------------------------------------------------
|
||
|
# Constructors
|
||
|
|
||
|
_dtype: np.dtype | DatetimeTZDtype
|
||
|
_freq: BaseOffset | None = None
|
||
|
_default_dtype = DT64NS_DTYPE # used in TimeLikeOps.__init__
|
||
|
|
||
|
@classmethod
|
||
|
def _validate_dtype(cls, values, dtype):
|
||
|
# used in TimeLikeOps.__init__
|
||
|
_validate_dt64_dtype(values.dtype)
|
||
|
dtype = _validate_dt64_dtype(dtype)
|
||
|
return dtype
|
||
|
|
||
|
# error: Signature of "_simple_new" incompatible with supertype "NDArrayBacked"
|
||
|
@classmethod
|
||
|
def _simple_new( # type: ignore[override]
|
||
|
cls,
|
||
|
values: np.ndarray,
|
||
|
freq: BaseOffset | None = None,
|
||
|
dtype=DT64NS_DTYPE,
|
||
|
) -> DatetimeArray:
|
||
|
assert isinstance(values, np.ndarray)
|
||
|
assert dtype.kind == "M"
|
||
|
if isinstance(dtype, np.dtype):
|
||
|
assert dtype == values.dtype
|
||
|
assert not is_unitless(dtype)
|
||
|
else:
|
||
|
# DatetimeTZDtype. If we have e.g. DatetimeTZDtype[us, UTC],
|
||
|
# then values.dtype should be M8[us].
|
||
|
assert dtype._creso == get_unit_from_dtype(values.dtype)
|
||
|
|
||
|
result = super()._simple_new(values, dtype)
|
||
|
result._freq = freq
|
||
|
return result
|
||
|
|
||
|
@classmethod
|
||
|
def _from_sequence(cls, scalars, *, dtype=None, copy: bool = False):
|
||
|
return cls._from_sequence_not_strict(scalars, dtype=dtype, copy=copy)
|
||
|
|
||
|
@classmethod
|
||
|
def _from_sequence_not_strict(
|
||
|
cls,
|
||
|
data,
|
||
|
*,
|
||
|
dtype=None,
|
||
|
copy: bool = False,
|
||
|
tz=lib.no_default,
|
||
|
freq: str | BaseOffset | lib.NoDefault | None = lib.no_default,
|
||
|
dayfirst: bool = False,
|
||
|
yearfirst: bool = False,
|
||
|
ambiguous: TimeAmbiguous = "raise",
|
||
|
):
|
||
|
"""
|
||
|
A non-strict version of _from_sequence, called from DatetimeIndex.__new__.
|
||
|
"""
|
||
|
explicit_none = freq is None
|
||
|
freq = freq if freq is not lib.no_default else None
|
||
|
freq, freq_infer = dtl.maybe_infer_freq(freq)
|
||
|
|
||
|
# if the user either explicitly passes tz=None or a tz-naive dtype, we
|
||
|
# disallows inferring a tz.
|
||
|
explicit_tz_none = tz is None
|
||
|
if tz is lib.no_default:
|
||
|
tz = None
|
||
|
else:
|
||
|
tz = timezones.maybe_get_tz(tz)
|
||
|
|
||
|
dtype = _validate_dt64_dtype(dtype)
|
||
|
# if dtype has an embedded tz, capture it
|
||
|
tz = _validate_tz_from_dtype(dtype, tz, explicit_tz_none)
|
||
|
|
||
|
unit = None
|
||
|
if dtype is not None:
|
||
|
if isinstance(dtype, np.dtype):
|
||
|
unit = np.datetime_data(dtype)[0]
|
||
|
else:
|
||
|
# DatetimeTZDtype
|
||
|
unit = dtype.unit
|
||
|
|
||
|
subarr, tz, inferred_freq = _sequence_to_dt64ns(
|
||
|
data,
|
||
|
copy=copy,
|
||
|
tz=tz,
|
||
|
dayfirst=dayfirst,
|
||
|
yearfirst=yearfirst,
|
||
|
ambiguous=ambiguous,
|
||
|
out_unit=unit,
|
||
|
)
|
||
|
# We have to call this again after possibly inferring a tz above
|
||
|
_validate_tz_from_dtype(dtype, tz, explicit_tz_none)
|
||
|
if tz is not None and explicit_tz_none:
|
||
|
raise ValueError(
|
||
|
"Passed data is timezone-aware, incompatible with 'tz=None'. "
|
||
|
"Use obj.tz_localize(None) instead."
|
||
|
)
|
||
|
|
||
|
freq, freq_infer = dtl.validate_inferred_freq(freq, inferred_freq, freq_infer)
|
||
|
if explicit_none:
|
||
|
freq = None
|
||
|
|
||
|
data_unit = np.datetime_data(subarr.dtype)[0]
|
||
|
data_dtype = tz_to_dtype(tz, data_unit)
|
||
|
result = cls._simple_new(subarr, freq=freq, dtype=data_dtype)
|
||
|
if unit is not None and unit != result.unit:
|
||
|
# If unit was specified in user-passed dtype, cast to it here
|
||
|
result = result.as_unit(unit)
|
||
|
|
||
|
if inferred_freq is None and freq is not None:
|
||
|
# this condition precludes `freq_infer`
|
||
|
cls._validate_frequency(result, freq, ambiguous=ambiguous)
|
||
|
|
||
|
elif freq_infer:
|
||
|
# Set _freq directly to bypass duplicative _validate_frequency
|
||
|
# check.
|
||
|
result._freq = to_offset(result.inferred_freq)
|
||
|
|
||
|
return result
|
||
|
|
||
|
# error: Signature of "_generate_range" incompatible with supertype
|
||
|
# "DatetimeLikeArrayMixin"
|
||
|
@classmethod
|
||
|
def _generate_range( # type: ignore[override]
|
||
|
cls,
|
||
|
start,
|
||
|
end,
|
||
|
periods,
|
||
|
freq,
|
||
|
tz=None,
|
||
|
normalize: bool = False,
|
||
|
ambiguous: TimeAmbiguous = "raise",
|
||
|
nonexistent: TimeNonexistent = "raise",
|
||
|
inclusive: IntervalClosedType = "both",
|
||
|
*,
|
||
|
unit: str | None = None,
|
||
|
) -> DatetimeArray:
|
||
|
periods = dtl.validate_periods(periods)
|
||
|
if freq is None and any(x is None for x in [periods, start, end]):
|
||
|
raise ValueError("Must provide freq argument if no data is supplied")
|
||
|
|
||
|
if com.count_not_none(start, end, periods, freq) != 3:
|
||
|
raise ValueError(
|
||
|
"Of the four parameters: start, end, periods, "
|
||
|
"and freq, exactly three must be specified"
|
||
|
)
|
||
|
freq = to_offset(freq)
|
||
|
|
||
|
if start is not None:
|
||
|
start = Timestamp(start)
|
||
|
|
||
|
if end is not None:
|
||
|
end = Timestamp(end)
|
||
|
|
||
|
if start is NaT or end is NaT:
|
||
|
raise ValueError("Neither `start` nor `end` can be NaT")
|
||
|
|
||
|
if unit is not None:
|
||
|
if unit not in ["s", "ms", "us", "ns"]:
|
||
|
raise ValueError("'unit' must be one of 's', 'ms', 'us', 'ns'")
|
||
|
else:
|
||
|
unit = "ns"
|
||
|
|
||
|
if start is not None and unit is not None:
|
||
|
start = start.as_unit(unit, round_ok=False)
|
||
|
if end is not None and unit is not None:
|
||
|
end = end.as_unit(unit, round_ok=False)
|
||
|
|
||
|
left_inclusive, right_inclusive = validate_inclusive(inclusive)
|
||
|
start, end = _maybe_normalize_endpoints(start, end, normalize)
|
||
|
tz = _infer_tz_from_endpoints(start, end, tz)
|
||
|
|
||
|
if tz is not None:
|
||
|
# Localize the start and end arguments
|
||
|
start_tz = None if start is None else start.tz
|
||
|
end_tz = None if end is None else end.tz
|
||
|
start = _maybe_localize_point(
|
||
|
start, start_tz, start, freq, tz, ambiguous, nonexistent
|
||
|
)
|
||
|
end = _maybe_localize_point(
|
||
|
end, end_tz, end, freq, tz, ambiguous, nonexistent
|
||
|
)
|
||
|
|
||
|
if freq is not None:
|
||
|
# We break Day arithmetic (fixed 24 hour) here and opt for
|
||
|
# Day to mean calendar day (23/24/25 hour). Therefore, strip
|
||
|
# tz info from start and day to avoid DST arithmetic
|
||
|
if isinstance(freq, Day):
|
||
|
if start is not None:
|
||
|
start = start.tz_localize(None)
|
||
|
if end is not None:
|
||
|
end = end.tz_localize(None)
|
||
|
|
||
|
if isinstance(freq, Tick):
|
||
|
i8values = generate_regular_range(start, end, periods, freq, unit=unit)
|
||
|
else:
|
||
|
xdr = _generate_range(
|
||
|
start=start, end=end, periods=periods, offset=freq, unit=unit
|
||
|
)
|
||
|
i8values = np.array([x._value for x in xdr], dtype=np.int64)
|
||
|
|
||
|
endpoint_tz = start.tz if start is not None else end.tz
|
||
|
|
||
|
if tz is not None and endpoint_tz is None:
|
||
|
if not timezones.is_utc(tz):
|
||
|
# short-circuit tz_localize_to_utc which would make
|
||
|
# an unnecessary copy with UTC but be a no-op.
|
||
|
creso = abbrev_to_npy_unit(unit)
|
||
|
i8values = tzconversion.tz_localize_to_utc(
|
||
|
i8values,
|
||
|
tz,
|
||
|
ambiguous=ambiguous,
|
||
|
nonexistent=nonexistent,
|
||
|
creso=creso,
|
||
|
)
|
||
|
|
||
|
# i8values is localized datetime64 array -> have to convert
|
||
|
# start/end as well to compare
|
||
|
if start is not None:
|
||
|
start = start.tz_localize(tz, ambiguous, nonexistent)
|
||
|
if end is not None:
|
||
|
end = end.tz_localize(tz, ambiguous, nonexistent)
|
||
|
else:
|
||
|
# Create a linearly spaced date_range in local time
|
||
|
# Nanosecond-granularity timestamps aren't always correctly
|
||
|
# representable with doubles, so we limit the range that we
|
||
|
# pass to np.linspace as much as possible
|
||
|
i8values = (
|
||
|
np.linspace(0, end._value - start._value, periods, dtype="int64")
|
||
|
+ start._value
|
||
|
)
|
||
|
if i8values.dtype != "i8":
|
||
|
# 2022-01-09 I (brock) am not sure if it is possible for this
|
||
|
# to overflow and cast to e.g. f8, but if it does we need to cast
|
||
|
i8values = i8values.astype("i8")
|
||
|
|
||
|
if start == end:
|
||
|
if not left_inclusive and not right_inclusive:
|
||
|
i8values = i8values[1:-1]
|
||
|
else:
|
||
|
start_i8 = Timestamp(start)._value
|
||
|
end_i8 = Timestamp(end)._value
|
||
|
if not left_inclusive or not right_inclusive:
|
||
|
if not left_inclusive and len(i8values) and i8values[0] == start_i8:
|
||
|
i8values = i8values[1:]
|
||
|
if not right_inclusive and len(i8values) and i8values[-1] == end_i8:
|
||
|
i8values = i8values[:-1]
|
||
|
|
||
|
dt64_values = i8values.view(f"datetime64[{unit}]")
|
||
|
dtype = tz_to_dtype(tz, unit=unit)
|
||
|
return cls._simple_new(dt64_values, freq=freq, dtype=dtype)
|
||
|
|
||
|
# -----------------------------------------------------------------
|
||
|
# DatetimeLike Interface
|
||
|
|
||
|
def _unbox_scalar(self, value) -> np.datetime64:
|
||
|
if not isinstance(value, self._scalar_type) and value is not NaT:
|
||
|
raise ValueError("'value' should be a Timestamp.")
|
||
|
self._check_compatible_with(value)
|
||
|
if value is NaT:
|
||
|
return np.datetime64(value._value, self.unit)
|
||
|
else:
|
||
|
return value.as_unit(self.unit).asm8
|
||
|
|
||
|
def _scalar_from_string(self, value) -> Timestamp | NaTType:
|
||
|
return Timestamp(value, tz=self.tz)
|
||
|
|
||
|
def _check_compatible_with(self, other) -> None:
|
||
|
if other is NaT:
|
||
|
return
|
||
|
self._assert_tzawareness_compat(other)
|
||
|
|
||
|
# -----------------------------------------------------------------
|
||
|
# Descriptive Properties
|
||
|
|
||
|
def _box_func(self, x: np.datetime64) -> Timestamp | NaTType:
|
||
|
# GH#42228
|
||
|
value = x.view("i8")
|
||
|
ts = Timestamp._from_value_and_reso(value, reso=self._creso, tz=self.tz)
|
||
|
return ts
|
||
|
|
||
|
@property
|
||
|
# error: Return type "Union[dtype, DatetimeTZDtype]" of "dtype"
|
||
|
# incompatible with return type "ExtensionDtype" in supertype
|
||
|
# "ExtensionArray"
|
||
|
def dtype(self) -> np.dtype | DatetimeTZDtype: # type: ignore[override]
|
||
|
"""
|
||
|
The dtype for the DatetimeArray.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
A future version of pandas will change dtype to never be a
|
||
|
``numpy.dtype``. Instead, :attr:`DatetimeArray.dtype` will
|
||
|
always be an instance of an ``ExtensionDtype`` subclass.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
numpy.dtype or DatetimeTZDtype
|
||
|
If the values are tz-naive, then ``np.dtype('datetime64[ns]')``
|
||
|
is returned.
|
||
|
|
||
|
If the values are tz-aware, then the ``DatetimeTZDtype``
|
||
|
is returned.
|
||
|
"""
|
||
|
return self._dtype
|
||
|
|
||
|
@property
|
||
|
def tz(self) -> tzinfo | None:
|
||
|
"""
|
||
|
Return the timezone.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
datetime.tzinfo, pytz.tzinfo.BaseTZInfo, dateutil.tz.tz.tzfile, or None
|
||
|
Returns None when the array is tz-naive.
|
||
|
"""
|
||
|
# GH 18595
|
||
|
return getattr(self.dtype, "tz", None)
|
||
|
|
||
|
@tz.setter
|
||
|
def tz(self, value):
|
||
|
# GH 3746: Prevent localizing or converting the index by setting tz
|
||
|
raise AttributeError(
|
||
|
"Cannot directly set timezone. Use tz_localize() "
|
||
|
"or tz_convert() as appropriate"
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def tzinfo(self) -> tzinfo | None:
|
||
|
"""
|
||
|
Alias for tz attribute
|
||
|
"""
|
||
|
return self.tz
|
||
|
|
||
|
@property # NB: override with cache_readonly in immutable subclasses
|
||
|
def is_normalized(self) -> bool:
|
||
|
"""
|
||
|
Returns True if all of the dates are at midnight ("no time")
|
||
|
"""
|
||
|
return is_date_array_normalized(self.asi8, self.tz, reso=self._creso)
|
||
|
|
||
|
@property # NB: override with cache_readonly in immutable subclasses
|
||
|
def _resolution_obj(self) -> Resolution:
|
||
|
return get_resolution(self.asi8, self.tz, reso=self._creso)
|
||
|
|
||
|
# ----------------------------------------------------------------
|
||
|
# Array-Like / EA-Interface Methods
|
||
|
|
||
|
def __array__(self, dtype=None) -> np.ndarray:
|
||
|
if dtype is None and self.tz:
|
||
|
# The default for tz-aware is object, to preserve tz info
|
||
|
dtype = object
|
||
|
|
||
|
return super().__array__(dtype=dtype)
|
||
|
|
||
|
def __iter__(self) -> Iterator:
|
||
|
"""
|
||
|
Return an iterator over the boxed values
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
tstamp : Timestamp
|
||
|
"""
|
||
|
if self.ndim > 1:
|
||
|
for i in range(len(self)):
|
||
|
yield self[i]
|
||
|
else:
|
||
|
# convert in chunks of 10k for efficiency
|
||
|
data = self.asi8
|
||
|
length = len(self)
|
||
|
chunksize = 10000
|
||
|
chunks = (length // chunksize) + 1
|
||
|
|
||
|
for i in range(chunks):
|
||
|
start_i = i * chunksize
|
||
|
end_i = min((i + 1) * chunksize, length)
|
||
|
converted = ints_to_pydatetime(
|
||
|
data[start_i:end_i],
|
||
|
tz=self.tz,
|
||
|
box="timestamp",
|
||
|
reso=self._creso,
|
||
|
)
|
||
|
yield from converted
|
||
|
|
||
|
def astype(self, dtype, copy: bool = True):
|
||
|
# We handle
|
||
|
# --> datetime
|
||
|
# --> period
|
||
|
# DatetimeLikeArrayMixin Super handles the rest.
|
||
|
dtype = pandas_dtype(dtype)
|
||
|
|
||
|
if is_dtype_equal(dtype, self.dtype):
|
||
|
if copy:
|
||
|
return self.copy()
|
||
|
return self
|
||
|
|
||
|
elif isinstance(dtype, ExtensionDtype):
|
||
|
if not isinstance(dtype, DatetimeTZDtype):
|
||
|
# e.g. Sparse[datetime64[ns]]
|
||
|
return super().astype(dtype, copy=copy)
|
||
|
elif self.tz is None:
|
||
|
# pre-2.0 this did self.tz_localize(dtype.tz), which did not match
|
||
|
# the Series behavior which did
|
||
|
# values.tz_localize("UTC").tz_convert(dtype.tz)
|
||
|
raise TypeError(
|
||
|
"Cannot use .astype to convert from timezone-naive dtype to "
|
||
|
"timezone-aware dtype. Use obj.tz_localize instead or "
|
||
|
"series.dt.tz_localize instead"
|
||
|
)
|
||
|
else:
|
||
|
# tzaware unit conversion e.g. datetime64[s, UTC]
|
||
|
np_dtype = np.dtype(dtype.str)
|
||
|
res_values = astype_overflowsafe(self._ndarray, np_dtype, copy=copy)
|
||
|
return type(self)._simple_new(res_values, dtype=dtype, freq=self.freq)
|
||
|
|
||
|
elif (
|
||
|
self.tz is None
|
||
|
and is_datetime64_dtype(dtype)
|
||
|
and not is_unitless(dtype)
|
||
|
and is_supported_unit(get_unit_from_dtype(dtype))
|
||
|
):
|
||
|
# unit conversion e.g. datetime64[s]
|
||
|
res_values = astype_overflowsafe(self._ndarray, dtype, copy=True)
|
||
|
return type(self)._simple_new(res_values, dtype=res_values.dtype)
|
||
|
# TODO: preserve freq?
|
||
|
|
||
|
elif self.tz is not None and is_datetime64_dtype(dtype):
|
||
|
# pre-2.0 behavior for DTA/DTI was
|
||
|
# values.tz_convert("UTC").tz_localize(None), which did not match
|
||
|
# the Series behavior
|
||
|
raise TypeError(
|
||
|
"Cannot use .astype to convert from timezone-aware dtype to "
|
||
|
"timezone-naive dtype. Use obj.tz_localize(None) or "
|
||
|
"obj.tz_convert('UTC').tz_localize(None) instead."
|
||
|
)
|
||
|
|
||
|
elif (
|
||
|
self.tz is None
|
||
|
and is_datetime64_dtype(dtype)
|
||
|
and dtype != self.dtype
|
||
|
and is_unitless(dtype)
|
||
|
):
|
||
|
raise TypeError(
|
||
|
"Casting to unit-less dtype 'datetime64' is not supported. "
|
||
|
"Pass e.g. 'datetime64[ns]' instead."
|
||
|
)
|
||
|
|
||
|
elif is_period_dtype(dtype):
|
||
|
return self.to_period(freq=dtype.freq)
|
||
|
return dtl.DatetimeLikeArrayMixin.astype(self, dtype, copy)
|
||
|
|
||
|
# -----------------------------------------------------------------
|
||
|
# Rendering Methods
|
||
|
|
||
|
def _format_native_types(
|
||
|
self, *, na_rep: str | float = "NaT", date_format=None, **kwargs
|
||
|
) -> npt.NDArray[np.object_]:
|
||
|
from pandas.io.formats.format import get_format_datetime64_from_values
|
||
|
|
||
|
fmt = get_format_datetime64_from_values(self, date_format)
|
||
|
|
||
|
return tslib.format_array_from_datetime(
|
||
|
self.asi8, tz=self.tz, format=fmt, na_rep=na_rep, reso=self._creso
|
||
|
)
|
||
|
|
||
|
# -----------------------------------------------------------------
|
||
|
# Comparison Methods
|
||
|
|
||
|
def _has_same_tz(self, other) -> bool:
|
||
|
# vzone shouldn't be None if value is non-datetime like
|
||
|
if isinstance(other, np.datetime64):
|
||
|
# convert to Timestamp as np.datetime64 doesn't have tz attr
|
||
|
other = Timestamp(other)
|
||
|
|
||
|
if not hasattr(other, "tzinfo"):
|
||
|
return False
|
||
|
other_tz = other.tzinfo
|
||
|
return timezones.tz_compare(self.tzinfo, other_tz)
|
||
|
|
||
|
def _assert_tzawareness_compat(self, other) -> None:
|
||
|
# adapted from _Timestamp._assert_tzawareness_compat
|
||
|
other_tz = getattr(other, "tzinfo", None)
|
||
|
other_dtype = getattr(other, "dtype", None)
|
||
|
|
||
|
if is_datetime64tz_dtype(other_dtype):
|
||
|
# Get tzinfo from Series dtype
|
||
|
other_tz = other.dtype.tz
|
||
|
if other is NaT:
|
||
|
# pd.NaT quacks both aware and naive
|
||
|
pass
|
||
|
elif self.tz is None:
|
||
|
if other_tz is not None:
|
||
|
raise TypeError(
|
||
|
"Cannot compare tz-naive and tz-aware datetime-like objects."
|
||
|
)
|
||
|
elif other_tz is None:
|
||
|
raise TypeError(
|
||
|
"Cannot compare tz-naive and tz-aware datetime-like objects"
|
||
|
)
|
||
|
|
||
|
# -----------------------------------------------------------------
|
||
|
# Arithmetic Methods
|
||
|
|
||
|
def _add_offset(self, offset) -> DatetimeArray:
|
||
|
assert not isinstance(offset, Tick)
|
||
|
|
||
|
if self.tz is not None:
|
||
|
values = self.tz_localize(None)
|
||
|
else:
|
||
|
values = self
|
||
|
|
||
|
try:
|
||
|
result = offset._apply_array(values).view(values.dtype)
|
||
|
except NotImplementedError:
|
||
|
warnings.warn(
|
||
|
"Non-vectorized DateOffset being applied to Series or DatetimeIndex.",
|
||
|
PerformanceWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
result = self.astype("O") + offset
|
||
|
result = type(self)._from_sequence(result).as_unit(self.unit)
|
||
|
if not len(self):
|
||
|
# GH#30336 _from_sequence won't be able to infer self.tz
|
||
|
return result.tz_localize(self.tz)
|
||
|
|
||
|
else:
|
||
|
result = DatetimeArray._simple_new(result, dtype=result.dtype)
|
||
|
if self.tz is not None:
|
||
|
result = result.tz_localize(self.tz)
|
||
|
|
||
|
return result
|
||
|
|
||
|
# -----------------------------------------------------------------
|
||
|
# Timezone Conversion and Localization Methods
|
||
|
|
||
|
def _local_timestamps(self) -> npt.NDArray[np.int64]:
|
||
|
"""
|
||
|
Convert to an i8 (unix-like nanosecond timestamp) representation
|
||
|
while keeping the local timezone and not using UTC.
|
||
|
This is used to calculate time-of-day information as if the timestamps
|
||
|
were timezone-naive.
|
||
|
"""
|
||
|
if self.tz is None or timezones.is_utc(self.tz):
|
||
|
# Avoid the copy that would be made in tzconversion
|
||
|
return self.asi8
|
||
|
return tz_convert_from_utc(self.asi8, self.tz, reso=self._creso)
|
||
|
|
||
|
def tz_convert(self, tz) -> DatetimeArray:
|
||
|
"""
|
||
|
Convert tz-aware Datetime Array/Index from one time zone to another.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tz : str, pytz.timezone, dateutil.tz.tzfile, datetime.tzinfo or None
|
||
|
Time zone for time. Corresponding timestamps would be converted
|
||
|
to this time zone of the Datetime Array/Index. A `tz` of None will
|
||
|
convert to UTC and remove the timezone information.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Array or Index
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError
|
||
|
If Datetime Array/Index is tz-naive.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DatetimeIndex.tz : A timezone that has a variable offset from UTC.
|
||
|
DatetimeIndex.tz_localize : Localize tz-naive DatetimeIndex to a
|
||
|
given time zone, or remove timezone from a tz-aware DatetimeIndex.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
With the `tz` parameter, we can change the DatetimeIndex
|
||
|
to other time zones:
|
||
|
|
||
|
>>> dti = pd.date_range(start='2014-08-01 09:00',
|
||
|
... freq='H', periods=3, tz='Europe/Berlin')
|
||
|
|
||
|
>>> dti
|
||
|
DatetimeIndex(['2014-08-01 09:00:00+02:00',
|
||
|
'2014-08-01 10:00:00+02:00',
|
||
|
'2014-08-01 11:00:00+02:00'],
|
||
|
dtype='datetime64[ns, Europe/Berlin]', freq='H')
|
||
|
|
||
|
>>> dti.tz_convert('US/Central')
|
||
|
DatetimeIndex(['2014-08-01 02:00:00-05:00',
|
||
|
'2014-08-01 03:00:00-05:00',
|
||
|
'2014-08-01 04:00:00-05:00'],
|
||
|
dtype='datetime64[ns, US/Central]', freq='H')
|
||
|
|
||
|
With the ``tz=None``, we can remove the timezone (after converting
|
||
|
to UTC if necessary):
|
||
|
|
||
|
>>> dti = pd.date_range(start='2014-08-01 09:00', freq='H',
|
||
|
... periods=3, tz='Europe/Berlin')
|
||
|
|
||
|
>>> dti
|
||
|
DatetimeIndex(['2014-08-01 09:00:00+02:00',
|
||
|
'2014-08-01 10:00:00+02:00',
|
||
|
'2014-08-01 11:00:00+02:00'],
|
||
|
dtype='datetime64[ns, Europe/Berlin]', freq='H')
|
||
|
|
||
|
>>> dti.tz_convert(None)
|
||
|
DatetimeIndex(['2014-08-01 07:00:00',
|
||
|
'2014-08-01 08:00:00',
|
||
|
'2014-08-01 09:00:00'],
|
||
|
dtype='datetime64[ns]', freq='H')
|
||
|
"""
|
||
|
tz = timezones.maybe_get_tz(tz)
|
||
|
|
||
|
if self.tz is None:
|
||
|
# tz naive, use tz_localize
|
||
|
raise TypeError(
|
||
|
"Cannot convert tz-naive timestamps, use tz_localize to localize"
|
||
|
)
|
||
|
|
||
|
# No conversion since timestamps are all UTC to begin with
|
||
|
dtype = tz_to_dtype(tz, unit=self.unit)
|
||
|
return self._simple_new(self._ndarray, dtype=dtype, freq=self.freq)
|
||
|
|
||
|
@dtl.ravel_compat
|
||
|
def tz_localize(
|
||
|
self,
|
||
|
tz,
|
||
|
ambiguous: TimeAmbiguous = "raise",
|
||
|
nonexistent: TimeNonexistent = "raise",
|
||
|
) -> DatetimeArray:
|
||
|
"""
|
||
|
Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index.
|
||
|
|
||
|
This method takes a time zone (tz) naive Datetime Array/Index object
|
||
|
and makes this time zone aware. It does not move the time to another
|
||
|
time zone.
|
||
|
|
||
|
This method can also be used to do the inverse -- to create a time
|
||
|
zone unaware object from an aware object. To that end, pass `tz=None`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tz : str, pytz.timezone, dateutil.tz.tzfile, datetime.tzinfo or None
|
||
|
Time zone to convert timestamps to. Passing ``None`` will
|
||
|
remove the time zone information preserving local time.
|
||
|
ambiguous : 'infer', 'NaT', bool array, default 'raise'
|
||
|
When clocks moved backward due to DST, ambiguous times may arise.
|
||
|
For example in Central European Time (UTC+01), when going from
|
||
|
03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at
|
||
|
00:30:00 UTC and at 01:30:00 UTC. In such a situation, the
|
||
|
`ambiguous` parameter dictates how ambiguous times should be
|
||
|
handled.
|
||
|
|
||
|
- 'infer' will attempt to infer fall dst-transition hours based on
|
||
|
order
|
||
|
- bool-ndarray where True signifies a DST time, False signifies a
|
||
|
non-DST time (note that this flag is only applicable for
|
||
|
ambiguous times)
|
||
|
- 'NaT' will return NaT where there are ambiguous times
|
||
|
- 'raise' will raise an AmbiguousTimeError if there are ambiguous
|
||
|
times.
|
||
|
|
||
|
nonexistent : 'shift_forward', 'shift_backward, 'NaT', timedelta, \
|
||
|
default 'raise'
|
||
|
A nonexistent time does not exist in a particular timezone
|
||
|
where clocks moved forward due to DST.
|
||
|
|
||
|
- 'shift_forward' will shift the nonexistent time forward to the
|
||
|
closest existing time
|
||
|
- 'shift_backward' will shift the nonexistent time backward to the
|
||
|
closest existing time
|
||
|
- 'NaT' will return NaT where there are nonexistent times
|
||
|
- timedelta objects will shift nonexistent times by the timedelta
|
||
|
- 'raise' will raise an NonExistentTimeError if there are
|
||
|
nonexistent times.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Same type as self
|
||
|
Array/Index converted to the specified time zone.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError
|
||
|
If the Datetime Array/Index is tz-aware and tz is not None.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DatetimeIndex.tz_convert : Convert tz-aware DatetimeIndex from
|
||
|
one time zone to another.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3)
|
||
|
>>> tz_naive
|
||
|
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
|
||
|
'2018-03-03 09:00:00'],
|
||
|
dtype='datetime64[ns]', freq='D')
|
||
|
|
||
|
Localize DatetimeIndex in US/Eastern time zone:
|
||
|
|
||
|
>>> tz_aware = tz_naive.tz_localize(tz='US/Eastern')
|
||
|
>>> tz_aware
|
||
|
DatetimeIndex(['2018-03-01 09:00:00-05:00',
|
||
|
'2018-03-02 09:00:00-05:00',
|
||
|
'2018-03-03 09:00:00-05:00'],
|
||
|
dtype='datetime64[ns, US/Eastern]', freq=None)
|
||
|
|
||
|
With the ``tz=None``, we can remove the time zone information
|
||
|
while keeping the local time (not converted to UTC):
|
||
|
|
||
|
>>> tz_aware.tz_localize(None)
|
||
|
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
|
||
|
'2018-03-03 09:00:00'],
|
||
|
dtype='datetime64[ns]', freq=None)
|
||
|
|
||
|
Be careful with DST changes. When there is sequential data, pandas can
|
||
|
infer the DST time:
|
||
|
|
||
|
>>> s = pd.to_datetime(pd.Series(['2018-10-28 01:30:00',
|
||
|
... '2018-10-28 02:00:00',
|
||
|
... '2018-10-28 02:30:00',
|
||
|
... '2018-10-28 02:00:00',
|
||
|
... '2018-10-28 02:30:00',
|
||
|
... '2018-10-28 03:00:00',
|
||
|
... '2018-10-28 03:30:00']))
|
||
|
>>> s.dt.tz_localize('CET', ambiguous='infer')
|
||
|
0 2018-10-28 01:30:00+02:00
|
||
|
1 2018-10-28 02:00:00+02:00
|
||
|
2 2018-10-28 02:30:00+02:00
|
||
|
3 2018-10-28 02:00:00+01:00
|
||
|
4 2018-10-28 02:30:00+01:00
|
||
|
5 2018-10-28 03:00:00+01:00
|
||
|
6 2018-10-28 03:30:00+01:00
|
||
|
dtype: datetime64[ns, CET]
|
||
|
|
||
|
In some cases, inferring the DST is impossible. In such cases, you can
|
||
|
pass an ndarray to the ambiguous parameter to set the DST explicitly
|
||
|
|
||
|
>>> s = pd.to_datetime(pd.Series(['2018-10-28 01:20:00',
|
||
|
... '2018-10-28 02:36:00',
|
||
|
... '2018-10-28 03:46:00']))
|
||
|
>>> s.dt.tz_localize('CET', ambiguous=np.array([True, True, False]))
|
||
|
0 2018-10-28 01:20:00+02:00
|
||
|
1 2018-10-28 02:36:00+02:00
|
||
|
2 2018-10-28 03:46:00+01:00
|
||
|
dtype: datetime64[ns, CET]
|
||
|
|
||
|
If the DST transition causes nonexistent times, you can shift these
|
||
|
dates forward or backwards with a timedelta object or `'shift_forward'`
|
||
|
or `'shift_backwards'`.
|
||
|
|
||
|
>>> s = pd.to_datetime(pd.Series(['2015-03-29 02:30:00',
|
||
|
... '2015-03-29 03:30:00']))
|
||
|
>>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_forward')
|
||
|
0 2015-03-29 03:00:00+02:00
|
||
|
1 2015-03-29 03:30:00+02:00
|
||
|
dtype: datetime64[ns, Europe/Warsaw]
|
||
|
|
||
|
>>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_backward')
|
||
|
0 2015-03-29 01:59:59.999999999+01:00
|
||
|
1 2015-03-29 03:30:00+02:00
|
||
|
dtype: datetime64[ns, Europe/Warsaw]
|
||
|
|
||
|
>>> s.dt.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H'))
|
||
|
0 2015-03-29 03:30:00+02:00
|
||
|
1 2015-03-29 03:30:00+02:00
|
||
|
dtype: datetime64[ns, Europe/Warsaw]
|
||
|
"""
|
||
|
nonexistent_options = ("raise", "NaT", "shift_forward", "shift_backward")
|
||
|
if nonexistent not in nonexistent_options and not isinstance(
|
||
|
nonexistent, timedelta
|
||
|
):
|
||
|
raise ValueError(
|
||
|
"The nonexistent argument must be one of 'raise', "
|
||
|
"'NaT', 'shift_forward', 'shift_backward' or "
|
||
|
"a timedelta object"
|
||
|
)
|
||
|
|
||
|
if self.tz is not None:
|
||
|
if tz is None:
|
||
|
new_dates = tz_convert_from_utc(self.asi8, self.tz, reso=self._creso)
|
||
|
else:
|
||
|
raise TypeError("Already tz-aware, use tz_convert to convert.")
|
||
|
else:
|
||
|
tz = timezones.maybe_get_tz(tz)
|
||
|
# Convert to UTC
|
||
|
|
||
|
new_dates = tzconversion.tz_localize_to_utc(
|
||
|
self.asi8,
|
||
|
tz,
|
||
|
ambiguous=ambiguous,
|
||
|
nonexistent=nonexistent,
|
||
|
creso=self._creso,
|
||
|
)
|
||
|
new_dates = new_dates.view(f"M8[{self.unit}]")
|
||
|
dtype = tz_to_dtype(tz, unit=self.unit)
|
||
|
|
||
|
freq = None
|
||
|
if timezones.is_utc(tz) or (len(self) == 1 and not isna(new_dates[0])):
|
||
|
# we can preserve freq
|
||
|
# TODO: Also for fixed-offsets
|
||
|
freq = self.freq
|
||
|
elif tz is None and self.tz is None:
|
||
|
# no-op
|
||
|
freq = self.freq
|
||
|
return self._simple_new(new_dates, dtype=dtype, freq=freq)
|
||
|
|
||
|
# ----------------------------------------------------------------
|
||
|
# Conversion Methods - Vectorized analogues of Timestamp methods
|
||
|
|
||
|
def to_pydatetime(self) -> npt.NDArray[np.object_]:
|
||
|
"""
|
||
|
Return an ndarray of datetime.datetime objects.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
numpy.ndarray
|
||
|
"""
|
||
|
return ints_to_pydatetime(self.asi8, tz=self.tz, reso=self._creso)
|
||
|
|
||
|
def normalize(self) -> DatetimeArray:
|
||
|
"""
|
||
|
Convert times to midnight.
|
||
|
|
||
|
The time component of the date-time is converted to midnight i.e.
|
||
|
00:00:00. This is useful in cases, when the time does not matter.
|
||
|
Length is unaltered. The timezones are unaffected.
|
||
|
|
||
|
This method is available on Series with datetime values under
|
||
|
the ``.dt`` accessor, and directly on Datetime Array/Index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DatetimeArray, DatetimeIndex or Series
|
||
|
The same type as the original data. Series will have the same
|
||
|
name and index. DatetimeIndex will have the same name.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
floor : Floor the datetimes to the specified freq.
|
||
|
ceil : Ceil the datetimes to the specified freq.
|
||
|
round : Round the datetimes to the specified freq.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> idx = pd.date_range(start='2014-08-01 10:00', freq='H',
|
||
|
... periods=3, tz='Asia/Calcutta')
|
||
|
>>> idx
|
||
|
DatetimeIndex(['2014-08-01 10:00:00+05:30',
|
||
|
'2014-08-01 11:00:00+05:30',
|
||
|
'2014-08-01 12:00:00+05:30'],
|
||
|
dtype='datetime64[ns, Asia/Calcutta]', freq='H')
|
||
|
>>> idx.normalize()
|
||
|
DatetimeIndex(['2014-08-01 00:00:00+05:30',
|
||
|
'2014-08-01 00:00:00+05:30',
|
||
|
'2014-08-01 00:00:00+05:30'],
|
||
|
dtype='datetime64[ns, Asia/Calcutta]', freq=None)
|
||
|
"""
|
||
|
new_values = normalize_i8_timestamps(self.asi8, self.tz, reso=self._creso)
|
||
|
dt64_values = new_values.view(self._ndarray.dtype)
|
||
|
|
||
|
dta = type(self)._simple_new(dt64_values, dtype=dt64_values.dtype)
|
||
|
dta = dta._with_freq("infer")
|
||
|
if self.tz is not None:
|
||
|
dta = dta.tz_localize(self.tz)
|
||
|
return dta
|
||
|
|
||
|
def to_period(self, freq=None) -> PeriodArray:
|
||
|
"""
|
||
|
Cast to PeriodArray/Index at a particular frequency.
|
||
|
|
||
|
Converts DatetimeArray/Index to PeriodArray/Index.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
freq : str or Offset, optional
|
||
|
One of pandas' :ref:`offset strings <timeseries.offset_aliases>`
|
||
|
or an Offset object. Will be inferred by default.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
PeriodArray/Index
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
When converting a DatetimeArray/Index with non-regular values,
|
||
|
so that a frequency cannot be inferred.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
PeriodIndex: Immutable ndarray holding ordinal values.
|
||
|
DatetimeIndex.to_pydatetime: Return DatetimeIndex as object.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame({"y": [1, 2, 3]},
|
||
|
... index=pd.to_datetime(["2000-03-31 00:00:00",
|
||
|
... "2000-05-31 00:00:00",
|
||
|
... "2000-08-31 00:00:00"]))
|
||
|
>>> df.index.to_period("M")
|
||
|
PeriodIndex(['2000-03', '2000-05', '2000-08'],
|
||
|
dtype='period[M]')
|
||
|
|
||
|
Infer the daily frequency
|
||
|
|
||
|
>>> idx = pd.date_range("2017-01-01", periods=2)
|
||
|
>>> idx.to_period()
|
||
|
PeriodIndex(['2017-01-01', '2017-01-02'],
|
||
|
dtype='period[D]')
|
||
|
"""
|
||
|
from pandas.core.arrays import PeriodArray
|
||
|
|
||
|
if self.tz is not None:
|
||
|
warnings.warn(
|
||
|
"Converting to PeriodArray/Index representation "
|
||
|
"will drop timezone information.",
|
||
|
UserWarning,
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
|
||
|
if freq is None:
|
||
|
freq = self.freqstr or self.inferred_freq
|
||
|
|
||
|
if freq is None:
|
||
|
raise ValueError(
|
||
|
"You must pass a freq argument as current index has none."
|
||
|
)
|
||
|
|
||
|
res = get_period_alias(freq)
|
||
|
|
||
|
# https://github.com/pandas-dev/pandas/issues/33358
|
||
|
if res is None:
|
||
|
res = freq
|
||
|
|
||
|
freq = res
|
||
|
|
||
|
return PeriodArray._from_datetime64(self._ndarray, freq, tz=self.tz)
|
||
|
|
||
|
# -----------------------------------------------------------------
|
||
|
# Properties - Vectorized Timestamp Properties/Methods
|
||
|
|
||
|
def month_name(self, locale=None) -> npt.NDArray[np.object_]:
|
||
|
"""
|
||
|
Return the month names with specified locale.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
locale : str, optional
|
||
|
Locale determining the language in which to return the month name.
|
||
|
Default is English locale (``'en_US.utf8'``). Use the command
|
||
|
``locale -a`` on your terminal on Unix systems to find your locale
|
||
|
language code.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series or Index
|
||
|
Series or Index of month names.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.Series(pd.date_range(start='2018-01', freq='M', periods=3))
|
||
|
>>> s
|
||
|
0 2018-01-31
|
||
|
1 2018-02-28
|
||
|
2 2018-03-31
|
||
|
dtype: datetime64[ns]
|
||
|
>>> s.dt.month_name()
|
||
|
0 January
|
||
|
1 February
|
||
|
2 March
|
||
|
dtype: object
|
||
|
|
||
|
>>> idx = pd.date_range(start='2018-01', freq='M', periods=3)
|
||
|
>>> idx
|
||
|
DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31'],
|
||
|
dtype='datetime64[ns]', freq='M')
|
||
|
>>> idx.month_name()
|
||
|
Index(['January', 'February', 'March'], dtype='object')
|
||
|
|
||
|
Using the ``locale`` parameter you can set a different locale language,
|
||
|
for example: ``idx.month_name(locale='pt_BR.utf8')`` will return month
|
||
|
names in Brazilian Portuguese language.
|
||
|
|
||
|
>>> idx = pd.date_range(start='2018-01', freq='M', periods=3)
|
||
|
>>> idx
|
||
|
DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31'],
|
||
|
dtype='datetime64[ns]', freq='M')
|
||
|
>>> idx.month_name(locale='pt_BR.utf8') # doctest: +SKIP
|
||
|
Index(['Janeiro', 'Fevereiro', 'Março'], dtype='object')
|
||
|
"""
|
||
|
values = self._local_timestamps()
|
||
|
|
||
|
result = fields.get_date_name_field(
|
||
|
values, "month_name", locale=locale, reso=self._creso
|
||
|
)
|
||
|
result = self._maybe_mask_results(result, fill_value=None)
|
||
|
return result
|
||
|
|
||
|
def day_name(self, locale=None) -> npt.NDArray[np.object_]:
|
||
|
"""
|
||
|
Return the day names with specified locale.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
locale : str, optional
|
||
|
Locale determining the language in which to return the day name.
|
||
|
Default is English locale (``'en_US.utf8'``). Use the command
|
||
|
``locale -a`` on your terminal on Unix systems to find your locale
|
||
|
language code.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series or Index
|
||
|
Series or Index of day names.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.Series(pd.date_range(start='2018-01-01', freq='D', periods=3))
|
||
|
>>> s
|
||
|
0 2018-01-01
|
||
|
1 2018-01-02
|
||
|
2 2018-01-03
|
||
|
dtype: datetime64[ns]
|
||
|
>>> s.dt.day_name()
|
||
|
0 Monday
|
||
|
1 Tuesday
|
||
|
2 Wednesday
|
||
|
dtype: object
|
||
|
|
||
|
>>> idx = pd.date_range(start='2018-01-01', freq='D', periods=3)
|
||
|
>>> idx
|
||
|
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03'],
|
||
|
dtype='datetime64[ns]', freq='D')
|
||
|
>>> idx.day_name()
|
||
|
Index(['Monday', 'Tuesday', 'Wednesday'], dtype='object')
|
||
|
|
||
|
Using the ``locale`` parameter you can set a different locale language,
|
||
|
for example: ``idx.day_name(locale='pt_BR.utf8')`` will return day
|
||
|
names in Brazilian Portuguese language.
|
||
|
|
||
|
>>> idx = pd.date_range(start='2018-01-01', freq='D', periods=3)
|
||
|
>>> idx
|
||
|
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03'],
|
||
|
dtype='datetime64[ns]', freq='D')
|
||
|
>>> idx.day_name(locale='pt_BR.utf8') # doctest: +SKIP
|
||
|
Index(['Segunda', 'Terça', 'Quarta'], dtype='object')
|
||
|
"""
|
||
|
values = self._local_timestamps()
|
||
|
|
||
|
result = fields.get_date_name_field(
|
||
|
values, "day_name", locale=locale, reso=self._creso
|
||
|
)
|
||
|
result = self._maybe_mask_results(result, fill_value=None)
|
||
|
return result
|
||
|
|
||
|
@property
|
||
|
def time(self) -> npt.NDArray[np.object_]:
|
||
|
"""
|
||
|
Returns numpy array of :class:`datetime.time` objects.
|
||
|
|
||
|
The time part of the Timestamps.
|
||
|
"""
|
||
|
# If the Timestamps have a timezone that is not UTC,
|
||
|
# convert them into their i8 representation while
|
||
|
# keeping their timezone and not using UTC
|
||
|
timestamps = self._local_timestamps()
|
||
|
|
||
|
return ints_to_pydatetime(timestamps, box="time", reso=self._creso)
|
||
|
|
||
|
@property
|
||
|
def timetz(self) -> npt.NDArray[np.object_]:
|
||
|
"""
|
||
|
Returns numpy array of :class:`datetime.time` objects with timezones.
|
||
|
|
||
|
The time part of the Timestamps.
|
||
|
"""
|
||
|
return ints_to_pydatetime(self.asi8, self.tz, box="time", reso=self._creso)
|
||
|
|
||
|
@property
|
||
|
def date(self) -> npt.NDArray[np.object_]:
|
||
|
"""
|
||
|
Returns numpy array of python :class:`datetime.date` objects.
|
||
|
|
||
|
Namely, the date part of Timestamps without time and
|
||
|
timezone information.
|
||
|
"""
|
||
|
# If the Timestamps have a timezone that is not UTC,
|
||
|
# convert them into their i8 representation while
|
||
|
# keeping their timezone and not using UTC
|
||
|
timestamps = self._local_timestamps()
|
||
|
|
||
|
return ints_to_pydatetime(timestamps, box="date", reso=self._creso)
|
||
|
|
||
|
def isocalendar(self) -> DataFrame:
|
||
|
"""
|
||
|
Calculate year, week, and day according to the ISO 8601 standard.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
With columns year, week and day.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Timestamp.isocalendar : Function return a 3-tuple containing ISO year,
|
||
|
week number, and weekday for the given Timestamp object.
|
||
|
datetime.date.isocalendar : Return a named tuple object with
|
||
|
three components: year, week and weekday.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> idx = pd.date_range(start='2019-12-29', freq='D', periods=4)
|
||
|
>>> idx.isocalendar()
|
||
|
year week day
|
||
|
2019-12-29 2019 52 7
|
||
|
2019-12-30 2020 1 1
|
||
|
2019-12-31 2020 1 2
|
||
|
2020-01-01 2020 1 3
|
||
|
>>> idx.isocalendar().week
|
||
|
2019-12-29 52
|
||
|
2019-12-30 1
|
||
|
2019-12-31 1
|
||
|
2020-01-01 1
|
||
|
Freq: D, Name: week, dtype: UInt32
|
||
|
"""
|
||
|
from pandas import DataFrame
|
||
|
|
||
|
values = self._local_timestamps()
|
||
|
sarray = fields.build_isocalendar_sarray(values, reso=self._creso)
|
||
|
iso_calendar_df = DataFrame(
|
||
|
sarray, columns=["year", "week", "day"], dtype="UInt32"
|
||
|
)
|
||
|
if self._hasna:
|
||
|
iso_calendar_df.iloc[self._isnan] = None
|
||
|
return iso_calendar_df
|
||
|
|
||
|
year = _field_accessor(
|
||
|
"year",
|
||
|
"Y",
|
||
|
"""
|
||
|
The year of the datetime.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> datetime_series = pd.Series(
|
||
|
... pd.date_range("2000-01-01", periods=3, freq="Y")
|
||
|
... )
|
||
|
>>> datetime_series
|
||
|
0 2000-12-31
|
||
|
1 2001-12-31
|
||
|
2 2002-12-31
|
||
|
dtype: datetime64[ns]
|
||
|
>>> datetime_series.dt.year
|
||
|
0 2000
|
||
|
1 2001
|
||
|
2 2002
|
||
|
dtype: int32
|
||
|
""",
|
||
|
)
|
||
|
month = _field_accessor(
|
||
|
"month",
|
||
|
"M",
|
||
|
"""
|
||
|
The month as January=1, December=12.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> datetime_series = pd.Series(
|
||
|
... pd.date_range("2000-01-01", periods=3, freq="M")
|
||
|
... )
|
||
|
>>> datetime_series
|
||
|
0 2000-01-31
|
||
|
1 2000-02-29
|
||
|
2 2000-03-31
|
||
|
dtype: datetime64[ns]
|
||
|
>>> datetime_series.dt.month
|
||
|
0 1
|
||
|
1 2
|
||
|
2 3
|
||
|
dtype: int32
|
||
|
""",
|
||
|
)
|
||
|
day = _field_accessor(
|
||
|
"day",
|
||
|
"D",
|
||
|
"""
|
||
|
The day of the datetime.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> datetime_series = pd.Series(
|
||
|
... pd.date_range("2000-01-01", periods=3, freq="D")
|
||
|
... )
|
||
|
>>> datetime_series
|
||
|
0 2000-01-01
|
||
|
1 2000-01-02
|
||
|
2 2000-01-03
|
||
|
dtype: datetime64[ns]
|
||
|
>>> datetime_series.dt.day
|
||
|
0 1
|
||
|
1 2
|
||
|
2 3
|
||
|
dtype: int32
|
||
|
""",
|
||
|
)
|
||
|
hour = _field_accessor(
|
||
|
"hour",
|
||
|
"h",
|
||
|
"""
|
||
|
The hours of the datetime.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> datetime_series = pd.Series(
|
||
|
... pd.date_range("2000-01-01", periods=3, freq="h")
|
||
|
... )
|
||
|
>>> datetime_series
|
||
|
0 2000-01-01 00:00:00
|
||
|
1 2000-01-01 01:00:00
|
||
|
2 2000-01-01 02:00:00
|
||
|
dtype: datetime64[ns]
|
||
|
>>> datetime_series.dt.hour
|
||
|
0 0
|
||
|
1 1
|
||
|
2 2
|
||
|
dtype: int32
|
||
|
""",
|
||
|
)
|
||
|
minute = _field_accessor(
|
||
|
"minute",
|
||
|
"m",
|
||
|
"""
|
||
|
The minutes of the datetime.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> datetime_series = pd.Series(
|
||
|
... pd.date_range("2000-01-01", periods=3, freq="T")
|
||
|
... )
|
||
|
>>> datetime_series
|
||
|
0 2000-01-01 00:00:00
|
||
|
1 2000-01-01 00:01:00
|
||
|
2 2000-01-01 00:02:00
|
||
|
dtype: datetime64[ns]
|
||
|
>>> datetime_series.dt.minute
|
||
|
0 0
|
||
|
1 1
|
||
|
2 2
|
||
|
dtype: int32
|
||
|
""",
|
||
|
)
|
||
|
second = _field_accessor(
|
||
|
"second",
|
||
|
"s",
|
||
|
"""
|
||
|
The seconds of the datetime.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> datetime_series = pd.Series(
|
||
|
... pd.date_range("2000-01-01", periods=3, freq="s")
|
||
|
... )
|
||
|
>>> datetime_series
|
||
|
0 2000-01-01 00:00:00
|
||
|
1 2000-01-01 00:00:01
|
||
|
2 2000-01-01 00:00:02
|
||
|
dtype: datetime64[ns]
|
||
|
>>> datetime_series.dt.second
|
||
|
0 0
|
||
|
1 1
|
||
|
2 2
|
||
|
dtype: int32
|
||
|
""",
|
||
|
)
|
||
|
microsecond = _field_accessor(
|
||
|
"microsecond",
|
||
|
"us",
|
||
|
"""
|
||
|
The microseconds of the datetime.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> datetime_series = pd.Series(
|
||
|
... pd.date_range("2000-01-01", periods=3, freq="us")
|
||
|
... )
|
||
|
>>> datetime_series
|
||
|
0 2000-01-01 00:00:00.000000
|
||
|
1 2000-01-01 00:00:00.000001
|
||
|
2 2000-01-01 00:00:00.000002
|
||
|
dtype: datetime64[ns]
|
||
|
>>> datetime_series.dt.microsecond
|
||
|
0 0
|
||
|
1 1
|
||
|
2 2
|
||
|
dtype: int32
|
||
|
""",
|
||
|
)
|
||
|
nanosecond = _field_accessor(
|
||
|
"nanosecond",
|
||
|
"ns",
|
||
|
"""
|
||
|
The nanoseconds of the datetime.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> datetime_series = pd.Series(
|
||
|
... pd.date_range("2000-01-01", periods=3, freq="ns")
|
||
|
... )
|
||
|
>>> datetime_series
|
||
|
0 2000-01-01 00:00:00.000000000
|
||
|
1 2000-01-01 00:00:00.000000001
|
||
|
2 2000-01-01 00:00:00.000000002
|
||
|
dtype: datetime64[ns]
|
||
|
>>> datetime_series.dt.nanosecond
|
||
|
0 0
|
||
|
1 1
|
||
|
2 2
|
||
|
dtype: int32
|
||
|
""",
|
||
|
)
|
||
|
_dayofweek_doc = """
|
||
|
The day of the week with Monday=0, Sunday=6.
|
||
|
|
||
|
Return the day of the week. It is assumed the week starts on
|
||
|
Monday, which is denoted by 0 and ends on Sunday which is denoted
|
||
|
by 6. This method is available on both Series with datetime
|
||
|
values (using the `dt` accessor) or DatetimeIndex.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series or Index
|
||
|
Containing integers indicating the day number.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Series.dt.dayofweek : Alias.
|
||
|
Series.dt.weekday : Alias.
|
||
|
Series.dt.day_name : Returns the name of the day of the week.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> s = pd.date_range('2016-12-31', '2017-01-08', freq='D').to_series()
|
||
|
>>> s.dt.dayofweek
|
||
|
2016-12-31 5
|
||
|
2017-01-01 6
|
||
|
2017-01-02 0
|
||
|
2017-01-03 1
|
||
|
2017-01-04 2
|
||
|
2017-01-05 3
|
||
|
2017-01-06 4
|
||
|
2017-01-07 5
|
||
|
2017-01-08 6
|
||
|
Freq: D, dtype: int32
|
||
|
"""
|
||
|
day_of_week = _field_accessor("day_of_week", "dow", _dayofweek_doc)
|
||
|
dayofweek = day_of_week
|
||
|
weekday = day_of_week
|
||
|
|
||
|
day_of_year = _field_accessor(
|
||
|
"dayofyear",
|
||
|
"doy",
|
||
|
"""
|
||
|
The ordinal day of the year.
|
||
|
""",
|
||
|
)
|
||
|
dayofyear = day_of_year
|
||
|
quarter = _field_accessor(
|
||
|
"quarter",
|
||
|
"q",
|
||
|
"""
|
||
|
The quarter of the date.
|
||
|
""",
|
||
|
)
|
||
|
days_in_month = _field_accessor(
|
||
|
"days_in_month",
|
||
|
"dim",
|
||
|
"""
|
||
|
The number of days in the month.
|
||
|
""",
|
||
|
)
|
||
|
daysinmonth = days_in_month
|
||
|
_is_month_doc = """
|
||
|
Indicates whether the date is the {first_or_last} day of the month.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series or array
|
||
|
For Series, returns a Series with boolean values.
|
||
|
For DatetimeIndex, returns a boolean array.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
is_month_start : Return a boolean indicating whether the date
|
||
|
is the first day of the month.
|
||
|
is_month_end : Return a boolean indicating whether the date
|
||
|
is the last day of the month.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This method is available on Series with datetime values under
|
||
|
the ``.dt`` accessor, and directly on DatetimeIndex.
|
||
|
|
||
|
>>> s = pd.Series(pd.date_range("2018-02-27", periods=3))
|
||
|
>>> s
|
||
|
0 2018-02-27
|
||
|
1 2018-02-28
|
||
|
2 2018-03-01
|
||
|
dtype: datetime64[ns]
|
||
|
>>> s.dt.is_month_start
|
||
|
0 False
|
||
|
1 False
|
||
|
2 True
|
||
|
dtype: bool
|
||
|
>>> s.dt.is_month_end
|
||
|
0 False
|
||
|
1 True
|
||
|
2 False
|
||
|
dtype: bool
|
||
|
|
||
|
>>> idx = pd.date_range("2018-02-27", periods=3)
|
||
|
>>> idx.is_month_start
|
||
|
array([False, False, True])
|
||
|
>>> idx.is_month_end
|
||
|
array([False, True, False])
|
||
|
"""
|
||
|
is_month_start = _field_accessor(
|
||
|
"is_month_start", "is_month_start", _is_month_doc.format(first_or_last="first")
|
||
|
)
|
||
|
|
||
|
is_month_end = _field_accessor(
|
||
|
"is_month_end", "is_month_end", _is_month_doc.format(first_or_last="last")
|
||
|
)
|
||
|
|
||
|
is_quarter_start = _field_accessor(
|
||
|
"is_quarter_start",
|
||
|
"is_quarter_start",
|
||
|
"""
|
||
|
Indicator for whether the date is the first day of a quarter.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
is_quarter_start : Series or DatetimeIndex
|
||
|
The same type as the original data with boolean values. Series will
|
||
|
have the same name and index. DatetimeIndex will have the same
|
||
|
name.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
quarter : Return the quarter of the date.
|
||
|
is_quarter_end : Similar property for indicating the quarter end.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This method is available on Series with datetime values under
|
||
|
the ``.dt`` accessor, and directly on DatetimeIndex.
|
||
|
|
||
|
>>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30",
|
||
|
... periods=4)})
|
||
|
>>> df.assign(quarter=df.dates.dt.quarter,
|
||
|
... is_quarter_start=df.dates.dt.is_quarter_start)
|
||
|
dates quarter is_quarter_start
|
||
|
0 2017-03-30 1 False
|
||
|
1 2017-03-31 1 False
|
||
|
2 2017-04-01 2 True
|
||
|
3 2017-04-02 2 False
|
||
|
|
||
|
>>> idx = pd.date_range('2017-03-30', periods=4)
|
||
|
>>> idx
|
||
|
DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'],
|
||
|
dtype='datetime64[ns]', freq='D')
|
||
|
|
||
|
>>> idx.is_quarter_start
|
||
|
array([False, False, True, False])
|
||
|
""",
|
||
|
)
|
||
|
is_quarter_end = _field_accessor(
|
||
|
"is_quarter_end",
|
||
|
"is_quarter_end",
|
||
|
"""
|
||
|
Indicator for whether the date is the last day of a quarter.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
is_quarter_end : Series or DatetimeIndex
|
||
|
The same type as the original data with boolean values. Series will
|
||
|
have the same name and index. DatetimeIndex will have the same
|
||
|
name.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
quarter : Return the quarter of the date.
|
||
|
is_quarter_start : Similar property indicating the quarter start.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This method is available on Series with datetime values under
|
||
|
the ``.dt`` accessor, and directly on DatetimeIndex.
|
||
|
|
||
|
>>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30",
|
||
|
... periods=4)})
|
||
|
>>> df.assign(quarter=df.dates.dt.quarter,
|
||
|
... is_quarter_end=df.dates.dt.is_quarter_end)
|
||
|
dates quarter is_quarter_end
|
||
|
0 2017-03-30 1 False
|
||
|
1 2017-03-31 1 True
|
||
|
2 2017-04-01 2 False
|
||
|
3 2017-04-02 2 False
|
||
|
|
||
|
>>> idx = pd.date_range('2017-03-30', periods=4)
|
||
|
>>> idx
|
||
|
DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'],
|
||
|
dtype='datetime64[ns]', freq='D')
|
||
|
|
||
|
>>> idx.is_quarter_end
|
||
|
array([False, True, False, False])
|
||
|
""",
|
||
|
)
|
||
|
is_year_start = _field_accessor(
|
||
|
"is_year_start",
|
||
|
"is_year_start",
|
||
|
"""
|
||
|
Indicate whether the date is the first day of a year.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series or DatetimeIndex
|
||
|
The same type as the original data with boolean values. Series will
|
||
|
have the same name and index. DatetimeIndex will have the same
|
||
|
name.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
is_year_end : Similar property indicating the last day of the year.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This method is available on Series with datetime values under
|
||
|
the ``.dt`` accessor, and directly on DatetimeIndex.
|
||
|
|
||
|
>>> dates = pd.Series(pd.date_range("2017-12-30", periods=3))
|
||
|
>>> dates
|
||
|
0 2017-12-30
|
||
|
1 2017-12-31
|
||
|
2 2018-01-01
|
||
|
dtype: datetime64[ns]
|
||
|
|
||
|
>>> dates.dt.is_year_start
|
||
|
0 False
|
||
|
1 False
|
||
|
2 True
|
||
|
dtype: bool
|
||
|
|
||
|
>>> idx = pd.date_range("2017-12-30", periods=3)
|
||
|
>>> idx
|
||
|
DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'],
|
||
|
dtype='datetime64[ns]', freq='D')
|
||
|
|
||
|
>>> idx.is_year_start
|
||
|
array([False, False, True])
|
||
|
""",
|
||
|
)
|
||
|
is_year_end = _field_accessor(
|
||
|
"is_year_end",
|
||
|
"is_year_end",
|
||
|
"""
|
||
|
Indicate whether the date is the last day of the year.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series or DatetimeIndex
|
||
|
The same type as the original data with boolean values. Series will
|
||
|
have the same name and index. DatetimeIndex will have the same
|
||
|
name.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
is_year_start : Similar property indicating the start of the year.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This method is available on Series with datetime values under
|
||
|
the ``.dt`` accessor, and directly on DatetimeIndex.
|
||
|
|
||
|
>>> dates = pd.Series(pd.date_range("2017-12-30", periods=3))
|
||
|
>>> dates
|
||
|
0 2017-12-30
|
||
|
1 2017-12-31
|
||
|
2 2018-01-01
|
||
|
dtype: datetime64[ns]
|
||
|
|
||
|
>>> dates.dt.is_year_end
|
||
|
0 False
|
||
|
1 True
|
||
|
2 False
|
||
|
dtype: bool
|
||
|
|
||
|
>>> idx = pd.date_range("2017-12-30", periods=3)
|
||
|
>>> idx
|
||
|
DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'],
|
||
|
dtype='datetime64[ns]', freq='D')
|
||
|
|
||
|
>>> idx.is_year_end
|
||
|
array([False, True, False])
|
||
|
""",
|
||
|
)
|
||
|
is_leap_year = _field_accessor(
|
||
|
"is_leap_year",
|
||
|
"is_leap_year",
|
||
|
"""
|
||
|
Boolean indicator if the date belongs to a leap year.
|
||
|
|
||
|
A leap year is a year, which has 366 days (instead of 365) including
|
||
|
29th of February as an intercalary day.
|
||
|
Leap years are years which are multiples of four with the exception
|
||
|
of years divisible by 100 but not by 400.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Series or ndarray
|
||
|
Booleans indicating if dates belong to a leap year.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This method is available on Series with datetime values under
|
||
|
the ``.dt`` accessor, and directly on DatetimeIndex.
|
||
|
|
||
|
>>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="Y")
|
||
|
>>> idx
|
||
|
DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'],
|
||
|
dtype='datetime64[ns]', freq='A-DEC')
|
||
|
>>> idx.is_leap_year
|
||
|
array([ True, False, False])
|
||
|
|
||
|
>>> dates_series = pd.Series(idx)
|
||
|
>>> dates_series
|
||
|
0 2012-12-31
|
||
|
1 2013-12-31
|
||
|
2 2014-12-31
|
||
|
dtype: datetime64[ns]
|
||
|
>>> dates_series.dt.is_leap_year
|
||
|
0 True
|
||
|
1 False
|
||
|
2 False
|
||
|
dtype: bool
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
def to_julian_date(self) -> npt.NDArray[np.float64]:
|
||
|
"""
|
||
|
Convert Datetime Array to float64 ndarray of Julian Dates.
|
||
|
0 Julian date is noon January 1, 4713 BC.
|
||
|
https://en.wikipedia.org/wiki/Julian_day
|
||
|
"""
|
||
|
|
||
|
# http://mysite.verizon.net/aesir_research/date/jdalg2.htm
|
||
|
year = np.asarray(self.year)
|
||
|
month = np.asarray(self.month)
|
||
|
day = np.asarray(self.day)
|
||
|
testarr = month < 3
|
||
|
year[testarr] -= 1
|
||
|
month[testarr] += 12
|
||
|
return (
|
||
|
day
|
||
|
+ np.fix((153 * month - 457) / 5)
|
||
|
+ 365 * year
|
||
|
+ np.floor(year / 4)
|
||
|
- np.floor(year / 100)
|
||
|
+ np.floor(year / 400)
|
||
|
+ 1_721_118.5
|
||
|
+ (
|
||
|
self.hour
|
||
|
+ self.minute / 60
|
||
|
+ self.second / 3600
|
||
|
+ self.microsecond / 3600 / 10**6
|
||
|
+ self.nanosecond / 3600 / 10**9
|
||
|
)
|
||
|
/ 24
|
||
|
)
|
||
|
|
||
|
# -----------------------------------------------------------------
|
||
|
# Reductions
|
||
|
|
||
|
def std(
|
||
|
self,
|
||
|
axis=None,
|
||
|
dtype=None,
|
||
|
out=None,
|
||
|
ddof: int = 1,
|
||
|
keepdims: bool = False,
|
||
|
skipna: bool = True,
|
||
|
):
|
||
|
"""
|
||
|
Return sample standard deviation over requested axis.
|
||
|
|
||
|
Normalized by N-1 by default. This can be changed using the ddof argument
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : int optional, default None
|
||
|
Axis for the function to be applied on.
|
||
|
For `Series` this parameter is unused and defaults to `None`.
|
||
|
ddof : int, default 1
|
||
|
Degrees of Freedom. The divisor used in calculations is N - ddof,
|
||
|
where N represents the number of elements.
|
||
|
skipna : bool, default True
|
||
|
Exclude NA/null values. If an entire row/column is NA, the result will be
|
||
|
NA.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Timedelta
|
||
|
"""
|
||
|
# Because std is translation-invariant, we can get self.std
|
||
|
# by calculating (self - Timestamp(0)).std, and we can do it
|
||
|
# without creating a copy by using a view on self._ndarray
|
||
|
from pandas.core.arrays import TimedeltaArray
|
||
|
|
||
|
# Find the td64 dtype with the same resolution as our dt64 dtype
|
||
|
dtype_str = self._ndarray.dtype.name.replace("datetime64", "timedelta64")
|
||
|
dtype = np.dtype(dtype_str)
|
||
|
|
||
|
tda = TimedeltaArray._simple_new(self._ndarray.view(dtype), dtype=dtype)
|
||
|
|
||
|
return tda.std(axis=axis, out=out, ddof=ddof, keepdims=keepdims, skipna=skipna)
|
||
|
|
||
|
|
||
|
# -------------------------------------------------------------------
|
||
|
# Constructor Helpers
|
||
|
|
||
|
|
||
|
def _sequence_to_dt64ns(
|
||
|
data,
|
||
|
*,
|
||
|
copy: bool = False,
|
||
|
tz: tzinfo | None = None,
|
||
|
dayfirst: bool = False,
|
||
|
yearfirst: bool = False,
|
||
|
ambiguous: TimeAmbiguous = "raise",
|
||
|
out_unit: str | None = None,
|
||
|
):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
data : list-like
|
||
|
copy : bool, default False
|
||
|
tz : tzinfo or None, default None
|
||
|
dayfirst : bool, default False
|
||
|
yearfirst : bool, default False
|
||
|
ambiguous : str, bool, or arraylike, default 'raise'
|
||
|
See pandas._libs.tslibs.tzconversion.tz_localize_to_utc.
|
||
|
out_unit : str or None, default None
|
||
|
Desired output resolution.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : numpy.ndarray
|
||
|
The sequence converted to a numpy array with dtype ``datetime64[ns]``.
|
||
|
tz : tzinfo or None
|
||
|
Either the user-provided tzinfo or one inferred from the data.
|
||
|
inferred_freq : Tick or None
|
||
|
The inferred frequency of the sequence.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError : PeriodDType data is passed
|
||
|
"""
|
||
|
inferred_freq = None
|
||
|
|
||
|
data, copy = dtl.ensure_arraylike_for_datetimelike(
|
||
|
data, copy, cls_name="DatetimeArray"
|
||
|
)
|
||
|
|
||
|
if isinstance(data, DatetimeArray):
|
||
|
inferred_freq = data.freq
|
||
|
|
||
|
# By this point we are assured to have either a numpy array or Index
|
||
|
data, copy = maybe_convert_dtype(data, copy, tz=tz)
|
||
|
data_dtype = getattr(data, "dtype", None)
|
||
|
|
||
|
out_dtype = DT64NS_DTYPE
|
||
|
if out_unit is not None:
|
||
|
out_dtype = np.dtype(f"M8[{out_unit}]")
|
||
|
|
||
|
if (
|
||
|
is_object_dtype(data_dtype)
|
||
|
or is_string_dtype(data_dtype)
|
||
|
or is_sparse(data_dtype)
|
||
|
):
|
||
|
# TODO: We do not have tests specific to string-dtypes,
|
||
|
# also complex or categorical or other extension
|
||
|
copy = False
|
||
|
if lib.infer_dtype(data, skipna=False) == "integer":
|
||
|
data = data.astype(np.int64)
|
||
|
elif tz is not None and ambiguous == "raise":
|
||
|
# TODO: yearfirst/dayfirst/etc?
|
||
|
obj_data = np.asarray(data, dtype=object)
|
||
|
i8data = tslib.array_to_datetime_with_tz(obj_data, tz)
|
||
|
return i8data.view(DT64NS_DTYPE), tz, None
|
||
|
else:
|
||
|
# data comes back here as either i8 to denote UTC timestamps
|
||
|
# or M8[ns] to denote wall times
|
||
|
data, inferred_tz = objects_to_datetime64ns(
|
||
|
data,
|
||
|
dayfirst=dayfirst,
|
||
|
yearfirst=yearfirst,
|
||
|
allow_object=False,
|
||
|
)
|
||
|
if tz and inferred_tz:
|
||
|
# two timezones: convert to intended from base UTC repr
|
||
|
assert data.dtype == "i8"
|
||
|
# GH#42505
|
||
|
# by convention, these are _already_ UTC, e.g
|
||
|
return data.view(DT64NS_DTYPE), tz, None
|
||
|
|
||
|
elif inferred_tz:
|
||
|
tz = inferred_tz
|
||
|
|
||
|
data_dtype = data.dtype
|
||
|
|
||
|
# `data` may have originally been a Categorical[datetime64[ns, tz]],
|
||
|
# so we need to handle these types.
|
||
|
if is_datetime64tz_dtype(data_dtype):
|
||
|
# DatetimeArray -> ndarray
|
||
|
tz = _maybe_infer_tz(tz, data.tz)
|
||
|
result = data._ndarray
|
||
|
|
||
|
elif is_datetime64_dtype(data_dtype):
|
||
|
# tz-naive DatetimeArray or ndarray[datetime64]
|
||
|
data = getattr(data, "_ndarray", data)
|
||
|
new_dtype = data.dtype
|
||
|
data_unit = get_unit_from_dtype(new_dtype)
|
||
|
if not is_supported_unit(data_unit):
|
||
|
# Cast to the nearest supported unit, generally "s"
|
||
|
new_reso = get_supported_reso(data_unit)
|
||
|
new_unit = npy_unit_to_abbrev(new_reso)
|
||
|
new_dtype = np.dtype(f"M8[{new_unit}]")
|
||
|
data = astype_overflowsafe(data, dtype=new_dtype, copy=False)
|
||
|
data_unit = get_unit_from_dtype(new_dtype)
|
||
|
copy = False
|
||
|
|
||
|
if data.dtype.byteorder == ">":
|
||
|
# TODO: better way to handle this? non-copying alternative?
|
||
|
# without this, test_constructor_datetime64_bigendian fails
|
||
|
data = data.astype(data.dtype.newbyteorder("<"))
|
||
|
new_dtype = data.dtype
|
||
|
copy = False
|
||
|
|
||
|
if tz is not None:
|
||
|
# Convert tz-naive to UTC
|
||
|
# TODO: if tz is UTC, are there situations where we *don't* want a
|
||
|
# copy? tz_localize_to_utc always makes one.
|
||
|
shape = data.shape
|
||
|
if data.ndim > 1:
|
||
|
data = data.ravel()
|
||
|
|
||
|
data = tzconversion.tz_localize_to_utc(
|
||
|
data.view("i8"), tz, ambiguous=ambiguous, creso=data_unit
|
||
|
)
|
||
|
data = data.view(new_dtype)
|
||
|
data = data.reshape(shape)
|
||
|
|
||
|
assert data.dtype == new_dtype, data.dtype
|
||
|
result = data
|
||
|
|
||
|
else:
|
||
|
# must be integer dtype otherwise
|
||
|
# assume this data are epoch timestamps
|
||
|
if data.dtype != INT64_DTYPE:
|
||
|
data = data.astype(np.int64, copy=False)
|
||
|
result = data.view(out_dtype)
|
||
|
|
||
|
if copy:
|
||
|
result = result.copy()
|
||
|
|
||
|
assert isinstance(result, np.ndarray), type(result)
|
||
|
assert result.dtype.kind == "M"
|
||
|
assert result.dtype != "M8"
|
||
|
assert is_supported_unit(get_unit_from_dtype(result.dtype))
|
||
|
return result, tz, inferred_freq
|
||
|
|
||
|
|
||
|
def objects_to_datetime64ns(
|
||
|
data: np.ndarray,
|
||
|
dayfirst,
|
||
|
yearfirst,
|
||
|
utc: bool = False,
|
||
|
errors: DateTimeErrorChoices = "raise",
|
||
|
allow_object: bool = False,
|
||
|
):
|
||
|
"""
|
||
|
Convert data to array of timestamps.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : np.ndarray[object]
|
||
|
dayfirst : bool
|
||
|
yearfirst : bool
|
||
|
utc : bool, default False
|
||
|
Whether to convert/localize timestamps to UTC.
|
||
|
errors : {'raise', 'ignore', 'coerce'}
|
||
|
allow_object : bool
|
||
|
Whether to return an object-dtype ndarray instead of raising if the
|
||
|
data contains more than one timezone.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : ndarray
|
||
|
np.int64 dtype if returned values represent UTC timestamps
|
||
|
np.datetime64[ns] if returned values represent wall times
|
||
|
object if mixed timezones
|
||
|
inferred_tz : tzinfo or None
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError : if data cannot be converted to datetimes
|
||
|
"""
|
||
|
assert errors in ["raise", "ignore", "coerce"]
|
||
|
|
||
|
# if str-dtype, convert
|
||
|
data = np.array(data, copy=False, dtype=np.object_)
|
||
|
|
||
|
result, tz_parsed = tslib.array_to_datetime(
|
||
|
data,
|
||
|
errors=errors,
|
||
|
utc=utc,
|
||
|
dayfirst=dayfirst,
|
||
|
yearfirst=yearfirst,
|
||
|
)
|
||
|
|
||
|
if tz_parsed is not None:
|
||
|
# We can take a shortcut since the datetime64 numpy array
|
||
|
# is in UTC
|
||
|
# Return i8 values to denote unix timestamps
|
||
|
return result.view("i8"), tz_parsed
|
||
|
elif is_datetime64_dtype(result):
|
||
|
# returning M8[ns] denotes wall-times; since tz is None
|
||
|
# the distinction is a thin one
|
||
|
return result, tz_parsed
|
||
|
elif is_object_dtype(result):
|
||
|
# GH#23675 when called via `pd.to_datetime`, returning an object-dtype
|
||
|
# array is allowed. When called via `pd.DatetimeIndex`, we can
|
||
|
# only accept datetime64 dtype, so raise TypeError if object-dtype
|
||
|
# is returned, as that indicates the values can be recognized as
|
||
|
# datetimes but they have conflicting timezones/awareness
|
||
|
if allow_object:
|
||
|
return result, tz_parsed
|
||
|
raise TypeError(result)
|
||
|
else: # pragma: no cover
|
||
|
# GH#23675 this TypeError should never be hit, whereas the TypeError
|
||
|
# in the object-dtype branch above is reachable.
|
||
|
raise TypeError(result)
|
||
|
|
||
|
|
||
|
def maybe_convert_dtype(data, copy: bool, tz: tzinfo | None = None):
|
||
|
"""
|
||
|
Convert data based on dtype conventions, issuing
|
||
|
errors where appropriate.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : np.ndarray or pd.Index
|
||
|
copy : bool
|
||
|
tz : tzinfo or None, default None
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
data : np.ndarray or pd.Index
|
||
|
copy : bool
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError : PeriodDType data is passed
|
||
|
"""
|
||
|
if not hasattr(data, "dtype"):
|
||
|
# e.g. collections.deque
|
||
|
return data, copy
|
||
|
|
||
|
if is_float_dtype(data.dtype):
|
||
|
# pre-2.0 we treated these as wall-times, inconsistent with ints
|
||
|
# GH#23675, GH#45573 deprecated to treat symmetrically with integer dtypes.
|
||
|
# Note: data.astype(np.int64) fails ARM tests, see
|
||
|
# https://github.com/pandas-dev/pandas/issues/49468.
|
||
|
data = data.astype(DT64NS_DTYPE).view("i8")
|
||
|
copy = False
|
||
|
|
||
|
elif is_timedelta64_dtype(data.dtype) or is_bool_dtype(data.dtype):
|
||
|
# GH#29794 enforcing deprecation introduced in GH#23539
|
||
|
raise TypeError(f"dtype {data.dtype} cannot be converted to datetime64[ns]")
|
||
|
elif is_period_dtype(data.dtype):
|
||
|
# Note: without explicitly raising here, PeriodIndex
|
||
|
# test_setops.test_join_does_not_recur fails
|
||
|
raise TypeError(
|
||
|
"Passing PeriodDtype data is invalid. Use `data.to_timestamp()` instead"
|
||
|
)
|
||
|
|
||
|
elif is_extension_array_dtype(data.dtype) and not is_datetime64tz_dtype(data.dtype):
|
||
|
# TODO: We have no tests for these
|
||
|
data = np.array(data, dtype=np.object_)
|
||
|
copy = False
|
||
|
|
||
|
return data, copy
|
||
|
|
||
|
|
||
|
# -------------------------------------------------------------------
|
||
|
# Validation and Inference
|
||
|
|
||
|
|
||
|
def _maybe_infer_tz(tz: tzinfo | None, inferred_tz: tzinfo | None) -> tzinfo | None:
|
||
|
"""
|
||
|
If a timezone is inferred from data, check that it is compatible with
|
||
|
the user-provided timezone, if any.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tz : tzinfo or None
|
||
|
inferred_tz : tzinfo or None
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
tz : tzinfo or None
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError : if both timezones are present but do not match
|
||
|
"""
|
||
|
if tz is None:
|
||
|
tz = inferred_tz
|
||
|
elif inferred_tz is None:
|
||
|
pass
|
||
|
elif not timezones.tz_compare(tz, inferred_tz):
|
||
|
raise TypeError(
|
||
|
f"data is already tz-aware {inferred_tz}, unable to "
|
||
|
f"set specified tz: {tz}"
|
||
|
)
|
||
|
return tz
|
||
|
|
||
|
|
||
|
def _validate_dt64_dtype(dtype):
|
||
|
"""
|
||
|
Check that a dtype, if passed, represents either a numpy datetime64[ns]
|
||
|
dtype or a pandas DatetimeTZDtype.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dtype : object
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dtype : None, numpy.dtype, or DatetimeTZDtype
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError : invalid dtype
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Unlike _validate_tz_from_dtype, this does _not_ allow non-existent
|
||
|
tz errors to go through
|
||
|
"""
|
||
|
if dtype is not None:
|
||
|
dtype = pandas_dtype(dtype)
|
||
|
if is_dtype_equal(dtype, np.dtype("M8")):
|
||
|
# no precision, disallowed GH#24806
|
||
|
msg = (
|
||
|
"Passing in 'datetime64' dtype with no precision is not allowed. "
|
||
|
"Please pass in 'datetime64[ns]' instead."
|
||
|
)
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
if (
|
||
|
isinstance(dtype, np.dtype)
|
||
|
and (dtype.kind != "M" or not is_supported_unit(get_unit_from_dtype(dtype)))
|
||
|
) or not isinstance(dtype, (np.dtype, DatetimeTZDtype)):
|
||
|
raise ValueError(
|
||
|
f"Unexpected value for 'dtype': '{dtype}'. "
|
||
|
"Must be 'datetime64[s]', 'datetime64[ms]', 'datetime64[us]', "
|
||
|
"'datetime64[ns]' or DatetimeTZDtype'."
|
||
|
)
|
||
|
|
||
|
if getattr(dtype, "tz", None):
|
||
|
# https://github.com/pandas-dev/pandas/issues/18595
|
||
|
# Ensure that we have a standard timezone for pytz objects.
|
||
|
# Without this, things like adding an array of timedeltas and
|
||
|
# a tz-aware Timestamp (with a tz specific to its datetime) will
|
||
|
# be incorrect(ish?) for the array as a whole
|
||
|
dtype = cast(DatetimeTZDtype, dtype)
|
||
|
dtype = DatetimeTZDtype(tz=timezones.tz_standardize(dtype.tz))
|
||
|
|
||
|
return dtype
|
||
|
|
||
|
|
||
|
def _validate_tz_from_dtype(
|
||
|
dtype, tz: tzinfo | None, explicit_tz_none: bool = False
|
||
|
) -> tzinfo | None:
|
||
|
"""
|
||
|
If the given dtype is a DatetimeTZDtype, extract the implied
|
||
|
tzinfo object from it and check that it does not conflict with the given
|
||
|
tz.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dtype : dtype, str
|
||
|
tz : None, tzinfo
|
||
|
explicit_tz_none : bool, default False
|
||
|
Whether tz=None was passed explicitly, as opposed to lib.no_default.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
tz : consensus tzinfo
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError : on tzinfo mismatch
|
||
|
"""
|
||
|
if dtype is not None:
|
||
|
if isinstance(dtype, str):
|
||
|
try:
|
||
|
dtype = DatetimeTZDtype.construct_from_string(dtype)
|
||
|
except TypeError:
|
||
|
# Things like `datetime64[ns]`, which is OK for the
|
||
|
# constructors, but also nonsense, which should be validated
|
||
|
# but not by us. We *do* allow non-existent tz errors to
|
||
|
# go through
|
||
|
pass
|
||
|
dtz = getattr(dtype, "tz", None)
|
||
|
if dtz is not None:
|
||
|
if tz is not None and not timezones.tz_compare(tz, dtz):
|
||
|
raise ValueError("cannot supply both a tz and a dtype with a tz")
|
||
|
if explicit_tz_none:
|
||
|
raise ValueError("Cannot pass both a timezone-aware dtype and tz=None")
|
||
|
tz = dtz
|
||
|
|
||
|
if tz is not None and is_datetime64_dtype(dtype):
|
||
|
# We also need to check for the case where the user passed a
|
||
|
# tz-naive dtype (i.e. datetime64[ns])
|
||
|
if tz is not None and not timezones.tz_compare(tz, dtz):
|
||
|
raise ValueError(
|
||
|
"cannot supply both a tz and a "
|
||
|
"timezone-naive dtype (i.e. datetime64[ns])"
|
||
|
)
|
||
|
|
||
|
return tz
|
||
|
|
||
|
|
||
|
def _infer_tz_from_endpoints(
|
||
|
start: Timestamp, end: Timestamp, tz: tzinfo | None
|
||
|
) -> tzinfo | None:
|
||
|
"""
|
||
|
If a timezone is not explicitly given via `tz`, see if one can
|
||
|
be inferred from the `start` and `end` endpoints. If more than one
|
||
|
of these inputs provides a timezone, require that they all agree.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : Timestamp
|
||
|
end : Timestamp
|
||
|
tz : tzinfo or None
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
tz : tzinfo or None
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError : if start and end timezones do not agree
|
||
|
"""
|
||
|
try:
|
||
|
inferred_tz = timezones.infer_tzinfo(start, end)
|
||
|
except AssertionError as err:
|
||
|
# infer_tzinfo raises AssertionError if passed mismatched timezones
|
||
|
raise TypeError(
|
||
|
"Start and end cannot both be tz-aware with different timezones"
|
||
|
) from err
|
||
|
|
||
|
inferred_tz = timezones.maybe_get_tz(inferred_tz)
|
||
|
tz = timezones.maybe_get_tz(tz)
|
||
|
|
||
|
if tz is not None and inferred_tz is not None:
|
||
|
if not timezones.tz_compare(inferred_tz, tz):
|
||
|
raise AssertionError("Inferred time zone not equal to passed time zone")
|
||
|
|
||
|
elif inferred_tz is not None:
|
||
|
tz = inferred_tz
|
||
|
|
||
|
return tz
|
||
|
|
||
|
|
||
|
def _maybe_normalize_endpoints(
|
||
|
start: Timestamp | None, end: Timestamp | None, normalize: bool
|
||
|
):
|
||
|
if normalize:
|
||
|
if start is not None:
|
||
|
start = start.normalize()
|
||
|
|
||
|
if end is not None:
|
||
|
end = end.normalize()
|
||
|
|
||
|
return start, end
|
||
|
|
||
|
|
||
|
def _maybe_localize_point(ts, is_none, is_not_none, freq, tz, ambiguous, nonexistent):
|
||
|
"""
|
||
|
Localize a start or end Timestamp to the timezone of the corresponding
|
||
|
start or end Timestamp
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ts : start or end Timestamp to potentially localize
|
||
|
is_none : argument that should be None
|
||
|
is_not_none : argument that should not be None
|
||
|
freq : Tick, DateOffset, or None
|
||
|
tz : str, timezone object or None
|
||
|
ambiguous: str, localization behavior for ambiguous times
|
||
|
nonexistent: str, localization behavior for nonexistent times
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ts : Timestamp
|
||
|
"""
|
||
|
# Make sure start and end are timezone localized if:
|
||
|
# 1) freq = a Timedelta-like frequency (Tick)
|
||
|
# 2) freq = None i.e. generating a linspaced range
|
||
|
if is_none is None and is_not_none is not None:
|
||
|
# Note: We can't ambiguous='infer' a singular ambiguous time; however,
|
||
|
# we have historically defaulted ambiguous=False
|
||
|
ambiguous = ambiguous if ambiguous != "infer" else False
|
||
|
localize_args = {"ambiguous": ambiguous, "nonexistent": nonexistent, "tz": None}
|
||
|
if isinstance(freq, Tick) or freq is None:
|
||
|
localize_args["tz"] = tz
|
||
|
ts = ts.tz_localize(**localize_args)
|
||
|
return ts
|
||
|
|
||
|
|
||
|
def _generate_range(
|
||
|
start: Timestamp | None,
|
||
|
end: Timestamp | None,
|
||
|
periods: int | None,
|
||
|
offset: BaseOffset,
|
||
|
*,
|
||
|
unit: str,
|
||
|
):
|
||
|
"""
|
||
|
Generates a sequence of dates corresponding to the specified time
|
||
|
offset. Similar to dateutil.rrule except uses pandas DateOffset
|
||
|
objects to represent time increments.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
start : Timestamp or None
|
||
|
end : Timestamp or None
|
||
|
periods : int or None
|
||
|
offset : DateOffset
|
||
|
unit : str
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
* This method is faster for generating weekdays than dateutil.rrule
|
||
|
* At least two of (start, end, periods) must be specified.
|
||
|
* If both start and end are specified, the returned dates will
|
||
|
satisfy start <= date <= end.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dates : generator object
|
||
|
"""
|
||
|
offset = to_offset(offset)
|
||
|
|
||
|
# Argument 1 to "Timestamp" has incompatible type "Optional[Timestamp]";
|
||
|
# expected "Union[integer[Any], float, str, date, datetime64]"
|
||
|
start = Timestamp(start) # type: ignore[arg-type]
|
||
|
if start is not NaT:
|
||
|
start = start.as_unit(unit)
|
||
|
else:
|
||
|
start = None
|
||
|
|
||
|
# Argument 1 to "Timestamp" has incompatible type "Optional[Timestamp]";
|
||
|
# expected "Union[integer[Any], float, str, date, datetime64]"
|
||
|
end = Timestamp(end) # type: ignore[arg-type]
|
||
|
if end is not NaT:
|
||
|
end = end.as_unit(unit)
|
||
|
else:
|
||
|
end = None
|
||
|
|
||
|
if start and not offset.is_on_offset(start):
|
||
|
# Incompatible types in assignment (expression has type "datetime",
|
||
|
# variable has type "Optional[Timestamp]")
|
||
|
start = offset.rollforward(start) # type: ignore[assignment]
|
||
|
|
||
|
elif end and not offset.is_on_offset(end):
|
||
|
# Incompatible types in assignment (expression has type "datetime",
|
||
|
# variable has type "Optional[Timestamp]")
|
||
|
end = offset.rollback(end) # type: ignore[assignment]
|
||
|
|
||
|
# Unsupported operand types for < ("Timestamp" and "None")
|
||
|
if periods is None and end < start and offset.n >= 0: # type: ignore[operator]
|
||
|
end = None
|
||
|
periods = 0
|
||
|
|
||
|
if end is None:
|
||
|
# error: No overload variant of "__radd__" of "BaseOffset" matches
|
||
|
# argument type "None"
|
||
|
end = start + (periods - 1) * offset # type: ignore[operator]
|
||
|
|
||
|
if start is None:
|
||
|
# error: No overload variant of "__radd__" of "BaseOffset" matches
|
||
|
# argument type "None"
|
||
|
start = end - (periods - 1) * offset # type: ignore[operator]
|
||
|
|
||
|
start = cast(Timestamp, start)
|
||
|
end = cast(Timestamp, end)
|
||
|
|
||
|
cur = start
|
||
|
if offset.n >= 0:
|
||
|
while cur <= end:
|
||
|
yield cur
|
||
|
|
||
|
if cur == end:
|
||
|
# GH#24252 avoid overflows by not performing the addition
|
||
|
# in offset.apply unless we have to
|
||
|
break
|
||
|
|
||
|
# faster than cur + offset
|
||
|
next_date = offset._apply(cur).as_unit(unit)
|
||
|
if next_date <= cur:
|
||
|
raise ValueError(f"Offset {offset} did not increment date")
|
||
|
cur = next_date
|
||
|
else:
|
||
|
while cur >= end:
|
||
|
yield cur
|
||
|
|
||
|
if cur == end:
|
||
|
# GH#24252 avoid overflows by not performing the addition
|
||
|
# in offset.apply unless we have to
|
||
|
break
|
||
|
|
||
|
# faster than cur + offset
|
||
|
next_date = offset._apply(cur).as_unit(unit)
|
||
|
if next_date >= cur:
|
||
|
raise ValueError(f"Offset {offset} did not decrement date")
|
||
|
cur = next_date
|