537 lines
17 KiB
Python
537 lines
17 KiB
Python
|
# ---------------------------------------------------------------------
|
||
|
# JSON normalization routines
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from collections import (
|
||
|
abc,
|
||
|
defaultdict,
|
||
|
)
|
||
|
import copy
|
||
|
import sys
|
||
|
from typing import (
|
||
|
Any,
|
||
|
DefaultDict,
|
||
|
Iterable,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._libs.writers import convert_json_to_lines
|
||
|
from pandas._typing import (
|
||
|
IgnoreRaise,
|
||
|
Scalar,
|
||
|
)
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import DataFrame
|
||
|
|
||
|
|
||
|
def convert_to_line_delimits(s: str) -> str:
|
||
|
"""
|
||
|
Helper function that converts JSON lists to line delimited JSON.
|
||
|
"""
|
||
|
# Determine we have a JSON list to turn to lines otherwise just return the
|
||
|
# json object, only lists can
|
||
|
if not s[0] == "[" and s[-1] == "]":
|
||
|
return s
|
||
|
s = s[1:-1]
|
||
|
|
||
|
return convert_json_to_lines(s)
|
||
|
|
||
|
|
||
|
def nested_to_record(
|
||
|
ds,
|
||
|
prefix: str = "",
|
||
|
sep: str = ".",
|
||
|
level: int = 0,
|
||
|
max_level: int | None = None,
|
||
|
):
|
||
|
"""
|
||
|
A simplified json_normalize
|
||
|
|
||
|
Converts a nested dict into a flat dict ("record"), unlike json_normalize,
|
||
|
it does not attempt to extract a subset of the data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ds : dict or list of dicts
|
||
|
prefix: the prefix, optional, default: ""
|
||
|
sep : str, default '.'
|
||
|
Nested records will generate names separated by sep,
|
||
|
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||
|
level: int, optional, default: 0
|
||
|
The number of levels in the json string.
|
||
|
|
||
|
max_level: int, optional, default: None
|
||
|
The max depth to normalize.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
d - dict or list of dicts, matching `ds`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> nested_to_record(
|
||
|
... dict(flat1=1, dict1=dict(c=1, d=2), nested=dict(e=dict(c=1, d=2), d=2))
|
||
|
... )
|
||
|
{\
|
||
|
'flat1': 1, \
|
||
|
'dict1.c': 1, \
|
||
|
'dict1.d': 2, \
|
||
|
'nested.e.c': 1, \
|
||
|
'nested.e.d': 2, \
|
||
|
'nested.d': 2\
|
||
|
}
|
||
|
"""
|
||
|
singleton = False
|
||
|
if isinstance(ds, dict):
|
||
|
ds = [ds]
|
||
|
singleton = True
|
||
|
new_ds = []
|
||
|
for d in ds:
|
||
|
new_d = copy.deepcopy(d)
|
||
|
for k, v in d.items():
|
||
|
# each key gets renamed with prefix
|
||
|
if not isinstance(k, str):
|
||
|
k = str(k)
|
||
|
if level == 0:
|
||
|
newkey = k
|
||
|
else:
|
||
|
newkey = prefix + sep + k
|
||
|
|
||
|
# flatten if type is dict and
|
||
|
# current dict level < maximum level provided and
|
||
|
# only dicts gets recurse-flattened
|
||
|
# only at level>1 do we rename the rest of the keys
|
||
|
if not isinstance(v, dict) or (
|
||
|
max_level is not None and level >= max_level
|
||
|
):
|
||
|
if level != 0: # so we skip copying for top level, common case
|
||
|
v = new_d.pop(k)
|
||
|
new_d[newkey] = v
|
||
|
continue
|
||
|
|
||
|
v = new_d.pop(k)
|
||
|
new_d.update(nested_to_record(v, newkey, sep, level + 1, max_level))
|
||
|
new_ds.append(new_d)
|
||
|
|
||
|
if singleton:
|
||
|
return new_ds[0]
|
||
|
return new_ds
|
||
|
|
||
|
|
||
|
def _normalise_json(
|
||
|
data: Any,
|
||
|
key_string: str,
|
||
|
normalized_dict: dict[str, Any],
|
||
|
separator: str,
|
||
|
) -> dict[str, Any]:
|
||
|
"""
|
||
|
Main recursive function
|
||
|
Designed for the most basic use case of pd.json_normalize(data)
|
||
|
intended as a performance improvement, see #15621
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : Any
|
||
|
Type dependent on types contained within nested Json
|
||
|
key_string : str
|
||
|
New key (with separator(s) in) for data
|
||
|
normalized_dict : dict
|
||
|
The new normalized/flattened Json dict
|
||
|
separator : str, default '.'
|
||
|
Nested records will generate names separated by sep,
|
||
|
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||
|
"""
|
||
|
if isinstance(data, dict):
|
||
|
for key, value in data.items():
|
||
|
new_key = f"{key_string}{separator}{key}"
|
||
|
|
||
|
if not key_string:
|
||
|
if sys.version_info < (3, 9):
|
||
|
from pandas.util._str_methods import removeprefix
|
||
|
|
||
|
new_key = removeprefix(new_key, separator)
|
||
|
else:
|
||
|
new_key = new_key.removeprefix(separator)
|
||
|
|
||
|
_normalise_json(
|
||
|
data=value,
|
||
|
key_string=new_key,
|
||
|
normalized_dict=normalized_dict,
|
||
|
separator=separator,
|
||
|
)
|
||
|
else:
|
||
|
normalized_dict[key_string] = data
|
||
|
return normalized_dict
|
||
|
|
||
|
|
||
|
def _normalise_json_ordered(data: dict[str, Any], separator: str) -> dict[str, Any]:
|
||
|
"""
|
||
|
Order the top level keys and then recursively go to depth
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : dict or list of dicts
|
||
|
separator : str, default '.'
|
||
|
Nested records will generate names separated by sep,
|
||
|
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dict or list of dicts, matching `normalised_json_object`
|
||
|
"""
|
||
|
top_dict_ = {k: v for k, v in data.items() if not isinstance(v, dict)}
|
||
|
nested_dict_ = _normalise_json(
|
||
|
data={k: v for k, v in data.items() if isinstance(v, dict)},
|
||
|
key_string="",
|
||
|
normalized_dict={},
|
||
|
separator=separator,
|
||
|
)
|
||
|
return {**top_dict_, **nested_dict_}
|
||
|
|
||
|
|
||
|
def _simple_json_normalize(
|
||
|
ds: dict | list[dict],
|
||
|
sep: str = ".",
|
||
|
) -> dict | list[dict] | Any:
|
||
|
"""
|
||
|
A optimized basic json_normalize
|
||
|
|
||
|
Converts a nested dict into a flat dict ("record"), unlike
|
||
|
json_normalize and nested_to_record it doesn't do anything clever.
|
||
|
But for the most basic use cases it enhances performance.
|
||
|
E.g. pd.json_normalize(data)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ds : dict or list of dicts
|
||
|
sep : str, default '.'
|
||
|
Nested records will generate names separated by sep,
|
||
|
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frame : DataFrame
|
||
|
d - dict or list of dicts, matching `normalised_json_object`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> _simple_json_normalize(
|
||
|
... {
|
||
|
... "flat1": 1,
|
||
|
... "dict1": {"c": 1, "d": 2},
|
||
|
... "nested": {"e": {"c": 1, "d": 2}, "d": 2},
|
||
|
... }
|
||
|
... )
|
||
|
{\
|
||
|
'flat1': 1, \
|
||
|
'dict1.c': 1, \
|
||
|
'dict1.d': 2, \
|
||
|
'nested.e.c': 1, \
|
||
|
'nested.e.d': 2, \
|
||
|
'nested.d': 2\
|
||
|
}
|
||
|
|
||
|
"""
|
||
|
normalised_json_object = {}
|
||
|
# expect a dictionary, as most jsons are. However, lists are perfectly valid
|
||
|
if isinstance(ds, dict):
|
||
|
normalised_json_object = _normalise_json_ordered(data=ds, separator=sep)
|
||
|
elif isinstance(ds, list):
|
||
|
normalised_json_list = [_simple_json_normalize(row, sep=sep) for row in ds]
|
||
|
return normalised_json_list
|
||
|
return normalised_json_object
|
||
|
|
||
|
|
||
|
def json_normalize(
|
||
|
data: dict | list[dict],
|
||
|
record_path: str | list | None = None,
|
||
|
meta: str | list[str | list[str]] | None = None,
|
||
|
meta_prefix: str | None = None,
|
||
|
record_prefix: str | None = None,
|
||
|
errors: IgnoreRaise = "raise",
|
||
|
sep: str = ".",
|
||
|
max_level: int | None = None,
|
||
|
) -> DataFrame:
|
||
|
"""
|
||
|
Normalize semi-structured JSON data into a flat table.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : dict or list of dicts
|
||
|
Unserialized JSON objects.
|
||
|
record_path : str or list of str, default None
|
||
|
Path in each object to list of records. If not passed, data will be
|
||
|
assumed to be an array of records.
|
||
|
meta : list of paths (str or list of str), default None
|
||
|
Fields to use as metadata for each record in resulting table.
|
||
|
meta_prefix : str, default None
|
||
|
If True, prefix records with dotted (?) path, e.g. foo.bar.field if
|
||
|
meta is ['foo', 'bar'].
|
||
|
record_prefix : str, default None
|
||
|
If True, prefix records with dotted (?) path, e.g. foo.bar.field if
|
||
|
path to records is ['foo', 'bar'].
|
||
|
errors : {'raise', 'ignore'}, default 'raise'
|
||
|
Configures error handling.
|
||
|
|
||
|
* 'ignore' : will ignore KeyError if keys listed in meta are not
|
||
|
always present.
|
||
|
* 'raise' : will raise KeyError if keys listed in meta are not
|
||
|
always present.
|
||
|
sep : str, default '.'
|
||
|
Nested records will generate names separated by sep.
|
||
|
e.g., for sep='.', {'foo': {'bar': 0}} -> foo.bar.
|
||
|
max_level : int, default None
|
||
|
Max number of levels(depth of dict) to normalize.
|
||
|
if None, normalizes all levels.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
frame : DataFrame
|
||
|
Normalize semi-structured JSON data into a flat table.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> data = [
|
||
|
... {"id": 1, "name": {"first": "Coleen", "last": "Volk"}},
|
||
|
... {"name": {"given": "Mark", "family": "Regner"}},
|
||
|
... {"id": 2, "name": "Faye Raker"},
|
||
|
... ]
|
||
|
>>> pd.json_normalize(data)
|
||
|
id name.first name.last name.given name.family name
|
||
|
0 1.0 Coleen Volk NaN NaN NaN
|
||
|
1 NaN NaN NaN Mark Regner NaN
|
||
|
2 2.0 NaN NaN NaN NaN Faye Raker
|
||
|
|
||
|
>>> data = [
|
||
|
... {
|
||
|
... "id": 1,
|
||
|
... "name": "Cole Volk",
|
||
|
... "fitness": {"height": 130, "weight": 60},
|
||
|
... },
|
||
|
... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
|
||
|
... {
|
||
|
... "id": 2,
|
||
|
... "name": "Faye Raker",
|
||
|
... "fitness": {"height": 130, "weight": 60},
|
||
|
... },
|
||
|
... ]
|
||
|
>>> pd.json_normalize(data, max_level=0)
|
||
|
id name fitness
|
||
|
0 1.0 Cole Volk {'height': 130, 'weight': 60}
|
||
|
1 NaN Mark Reg {'height': 130, 'weight': 60}
|
||
|
2 2.0 Faye Raker {'height': 130, 'weight': 60}
|
||
|
|
||
|
Normalizes nested data up to level 1.
|
||
|
|
||
|
>>> data = [
|
||
|
... {
|
||
|
... "id": 1,
|
||
|
... "name": "Cole Volk",
|
||
|
... "fitness": {"height": 130, "weight": 60},
|
||
|
... },
|
||
|
... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
|
||
|
... {
|
||
|
... "id": 2,
|
||
|
... "name": "Faye Raker",
|
||
|
... "fitness": {"height": 130, "weight": 60},
|
||
|
... },
|
||
|
... ]
|
||
|
>>> pd.json_normalize(data, max_level=1)
|
||
|
id name fitness.height fitness.weight
|
||
|
0 1.0 Cole Volk 130 60
|
||
|
1 NaN Mark Reg 130 60
|
||
|
2 2.0 Faye Raker 130 60
|
||
|
|
||
|
>>> data = [
|
||
|
... {
|
||
|
... "state": "Florida",
|
||
|
... "shortname": "FL",
|
||
|
... "info": {"governor": "Rick Scott"},
|
||
|
... "counties": [
|
||
|
... {"name": "Dade", "population": 12345},
|
||
|
... {"name": "Broward", "population": 40000},
|
||
|
... {"name": "Palm Beach", "population": 60000},
|
||
|
... ],
|
||
|
... },
|
||
|
... {
|
||
|
... "state": "Ohio",
|
||
|
... "shortname": "OH",
|
||
|
... "info": {"governor": "John Kasich"},
|
||
|
... "counties": [
|
||
|
... {"name": "Summit", "population": 1234},
|
||
|
... {"name": "Cuyahoga", "population": 1337},
|
||
|
... ],
|
||
|
... },
|
||
|
... ]
|
||
|
>>> result = pd.json_normalize(
|
||
|
... data, "counties", ["state", "shortname", ["info", "governor"]]
|
||
|
... )
|
||
|
>>> result
|
||
|
name population state shortname info.governor
|
||
|
0 Dade 12345 Florida FL Rick Scott
|
||
|
1 Broward 40000 Florida FL Rick Scott
|
||
|
2 Palm Beach 60000 Florida FL Rick Scott
|
||
|
3 Summit 1234 Ohio OH John Kasich
|
||
|
4 Cuyahoga 1337 Ohio OH John Kasich
|
||
|
|
||
|
>>> data = {"A": [1, 2]}
|
||
|
>>> pd.json_normalize(data, "A", record_prefix="Prefix.")
|
||
|
Prefix.0
|
||
|
0 1
|
||
|
1 2
|
||
|
|
||
|
Returns normalized data with columns prefixed with the given string.
|
||
|
"""
|
||
|
|
||
|
def _pull_field(
|
||
|
js: dict[str, Any], spec: list | str, extract_record: bool = False
|
||
|
) -> Scalar | Iterable:
|
||
|
"""Internal function to pull field"""
|
||
|
result = js
|
||
|
try:
|
||
|
if isinstance(spec, list):
|
||
|
for field in spec:
|
||
|
if result is None:
|
||
|
raise KeyError(field)
|
||
|
result = result[field]
|
||
|
else:
|
||
|
result = result[spec]
|
||
|
except KeyError as e:
|
||
|
if extract_record:
|
||
|
raise KeyError(
|
||
|
f"Key {e} not found. If specifying a record_path, all elements of "
|
||
|
f"data should have the path."
|
||
|
) from e
|
||
|
if errors == "ignore":
|
||
|
return np.nan
|
||
|
else:
|
||
|
raise KeyError(
|
||
|
f"Key {e} not found. To replace missing values of {e} with "
|
||
|
f"np.nan, pass in errors='ignore'"
|
||
|
) from e
|
||
|
|
||
|
return result
|
||
|
|
||
|
def _pull_records(js: dict[str, Any], spec: list | str) -> list:
|
||
|
"""
|
||
|
Internal function to pull field for records, and similar to
|
||
|
_pull_field, but require to return list. And will raise error
|
||
|
if has non iterable value.
|
||
|
"""
|
||
|
result = _pull_field(js, spec, extract_record=True)
|
||
|
|
||
|
# GH 31507 GH 30145, GH 26284 if result is not list, raise TypeError if not
|
||
|
# null, otherwise return an empty list
|
||
|
if not isinstance(result, list):
|
||
|
if pd.isnull(result):
|
||
|
result = []
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
f"{js} has non list value {result} for path {spec}. "
|
||
|
"Must be list or null."
|
||
|
)
|
||
|
return result
|
||
|
|
||
|
if isinstance(data, list) and not data:
|
||
|
return DataFrame()
|
||
|
elif isinstance(data, dict):
|
||
|
# A bit of a hackjob
|
||
|
data = [data]
|
||
|
elif isinstance(data, abc.Iterable) and not isinstance(data, str):
|
||
|
# GH35923 Fix pd.json_normalize to not skip the first element of a
|
||
|
# generator input
|
||
|
data = list(data)
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
# check to see if a simple recursive function is possible to
|
||
|
# improve performance (see #15621) but only for cases such
|
||
|
# as pd.Dataframe(data) or pd.Dataframe(data, sep)
|
||
|
if (
|
||
|
record_path is None
|
||
|
and meta is None
|
||
|
and meta_prefix is None
|
||
|
and record_prefix is None
|
||
|
and max_level is None
|
||
|
):
|
||
|
return DataFrame(_simple_json_normalize(data, sep=sep))
|
||
|
|
||
|
if record_path is None:
|
||
|
if any([isinstance(x, dict) for x in y.values()] for y in data):
|
||
|
# naive normalization, this is idempotent for flat records
|
||
|
# and potentially will inflate the data considerably for
|
||
|
# deeply nested structures:
|
||
|
# {VeryLong: { b: 1,c:2}} -> {VeryLong.b:1 ,VeryLong.c:@}
|
||
|
#
|
||
|
# TODO: handle record value which are lists, at least error
|
||
|
# reasonably
|
||
|
data = nested_to_record(data, sep=sep, max_level=max_level)
|
||
|
return DataFrame(data)
|
||
|
elif not isinstance(record_path, list):
|
||
|
record_path = [record_path]
|
||
|
|
||
|
if meta is None:
|
||
|
meta = []
|
||
|
elif not isinstance(meta, list):
|
||
|
meta = [meta]
|
||
|
|
||
|
_meta = [m if isinstance(m, list) else [m] for m in meta]
|
||
|
|
||
|
# Disastrously inefficient for now
|
||
|
records: list = []
|
||
|
lengths = []
|
||
|
|
||
|
meta_vals: DefaultDict = defaultdict(list)
|
||
|
meta_keys = [sep.join(val) for val in _meta]
|
||
|
|
||
|
def _recursive_extract(data, path, seen_meta, level: int = 0) -> None:
|
||
|
if isinstance(data, dict):
|
||
|
data = [data]
|
||
|
if len(path) > 1:
|
||
|
for obj in data:
|
||
|
for val, key in zip(_meta, meta_keys):
|
||
|
if level + 1 == len(val):
|
||
|
seen_meta[key] = _pull_field(obj, val[-1])
|
||
|
|
||
|
_recursive_extract(obj[path[0]], path[1:], seen_meta, level=level + 1)
|
||
|
else:
|
||
|
for obj in data:
|
||
|
recs = _pull_records(obj, path[0])
|
||
|
recs = [
|
||
|
nested_to_record(r, sep=sep, max_level=max_level)
|
||
|
if isinstance(r, dict)
|
||
|
else r
|
||
|
for r in recs
|
||
|
]
|
||
|
|
||
|
# For repeating the metadata later
|
||
|
lengths.append(len(recs))
|
||
|
for val, key in zip(_meta, meta_keys):
|
||
|
if level + 1 > len(val):
|
||
|
meta_val = seen_meta[key]
|
||
|
else:
|
||
|
meta_val = _pull_field(obj, val[level:])
|
||
|
meta_vals[key].append(meta_val)
|
||
|
records.extend(recs)
|
||
|
|
||
|
_recursive_extract(data, record_path, {}, level=0)
|
||
|
|
||
|
result = DataFrame(records)
|
||
|
|
||
|
if record_prefix is not None:
|
||
|
result = result.rename(columns=lambda x: f"{record_prefix}{x}")
|
||
|
|
||
|
# Data types, a problem
|
||
|
for k, v in meta_vals.items():
|
||
|
if meta_prefix is not None:
|
||
|
k = meta_prefix + k
|
||
|
|
||
|
if k in result:
|
||
|
raise ValueError(
|
||
|
f"Conflicting metadata name {k}, need distinguishing prefix "
|
||
|
)
|
||
|
result[k] = np.array(v, dtype=object).repeat(lengths)
|
||
|
return result
|