Inzynierka/Lib/site-packages/pandas/tests/apply/test_series_apply.py

957 lines
29 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
from collections import (
Counter,
defaultdict,
)
from decimal import Decimal
import math
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
concat,
isna,
timedelta_range,
)
import pandas._testing as tm
from pandas.tests.apply.common import series_transform_kernels
def test_series_map_box_timedelta():
# GH#11349
ser = Series(timedelta_range("1 day 1 s", periods=5, freq="h"))
def f(x):
return x.total_seconds()
ser.map(f)
ser.apply(f)
DataFrame(ser).applymap(f)
def test_apply(datetime_series):
with np.errstate(all="ignore"):
tm.assert_series_equal(datetime_series.apply(np.sqrt), np.sqrt(datetime_series))
# element-wise apply
tm.assert_series_equal(datetime_series.apply(math.exp), np.exp(datetime_series))
# empty series
s = Series(dtype=object, name="foo", index=Index([], name="bar"))
rs = s.apply(lambda x: x)
tm.assert_series_equal(s, rs)
# check all metadata (GH 9322)
assert s is not rs
assert s.index is rs.index
assert s.dtype == rs.dtype
assert s.name == rs.name
# index but no data
s = Series(index=[1, 2, 3], dtype=np.float64)
rs = s.apply(lambda x: x)
tm.assert_series_equal(s, rs)
def test_apply_same_length_inference_bug():
s = Series([1, 2])
def f(x):
return (x, x + 1)
result = s.apply(f)
expected = s.map(f)
tm.assert_series_equal(result, expected)
s = Series([1, 2, 3])
result = s.apply(f)
expected = s.map(f)
tm.assert_series_equal(result, expected)
def test_apply_dont_convert_dtype():
s = Series(np.random.randn(10))
def f(x):
return x if x > 0 else np.nan
result = s.apply(f, convert_dtype=False)
assert result.dtype == object
def test_apply_args():
s = Series(["foo,bar"])
result = s.apply(str.split, args=(",",))
assert result[0] == ["foo", "bar"]
assert isinstance(result[0], list)
@pytest.mark.parametrize(
"args, kwargs, increment",
[((), {}, 0), ((), {"a": 1}, 1), ((2, 3), {}, 32), ((1,), {"c": 2}, 201)],
)
def test_agg_args(args, kwargs, increment):
# GH 43357
def f(x, a=0, b=0, c=0):
return x + a + 10 * b + 100 * c
s = Series([1, 2])
result = s.agg(f, 0, *args, **kwargs)
expected = s + increment
tm.assert_series_equal(result, expected)
def test_agg_list_like_func_with_args():
# GH 50624
s = Series([1, 2, 3])
def foo1(x, a=1, c=0):
return x + a + c
def foo2(x, b=2, c=0):
return x + b + c
msg = r"foo1\(\) got an unexpected keyword argument 'b'"
with pytest.raises(TypeError, match=msg):
s.agg([foo1, foo2], 0, 3, b=3, c=4)
result = s.agg([foo1, foo2], 0, 3, c=4)
expected = DataFrame({"foo1": [8, 9, 10], "foo2": [8, 9, 10]})
tm.assert_frame_equal(result, expected)
def test_series_map_box_timestamps():
# GH#2689, GH#2627
ser = Series(pd.date_range("1/1/2000", periods=10))
def func(x):
return (x.hour, x.day, x.month)
# it works!
ser.map(func)
ser.apply(func)
def test_series_map_stringdtype(any_string_dtype):
# map test on StringDType, GH#40823
ser1 = Series(
data=["cat", "dog", "rabbit"],
index=["id1", "id2", "id3"],
dtype=any_string_dtype,
)
ser2 = Series(data=["id3", "id2", "id1", "id7000"], dtype=any_string_dtype)
result = ser2.map(ser1)
expected = Series(data=["rabbit", "dog", "cat", pd.NA], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_apply_box():
# ufunc will not be boxed. Same test cases as the test_map_box
vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]
s = Series(vals)
assert s.dtype == "datetime64[ns]"
# boxed value must be Timestamp instance
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
exp = Series(["Timestamp_1_None", "Timestamp_2_None"])
tm.assert_series_equal(res, exp)
vals = [
pd.Timestamp("2011-01-01", tz="US/Eastern"),
pd.Timestamp("2011-01-02", tz="US/Eastern"),
]
s = Series(vals)
assert s.dtype == "datetime64[ns, US/Eastern]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
exp = Series(["Timestamp_1_US/Eastern", "Timestamp_2_US/Eastern"])
tm.assert_series_equal(res, exp)
# timedelta
vals = [pd.Timedelta("1 days"), pd.Timedelta("2 days")]
s = Series(vals)
assert s.dtype == "timedelta64[ns]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.days}")
exp = Series(["Timedelta_1", "Timedelta_2"])
tm.assert_series_equal(res, exp)
# period
vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")]
s = Series(vals)
assert s.dtype == "Period[M]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.freqstr}")
exp = Series(["Period_M", "Period_M"])
tm.assert_series_equal(res, exp)
def test_apply_datetimetz():
values = pd.date_range("2011-01-01", "2011-01-02", freq="H").tz_localize(
"Asia/Tokyo"
)
s = Series(values, name="XX")
result = s.apply(lambda x: x + pd.offsets.Day())
exp_values = pd.date_range("2011-01-02", "2011-01-03", freq="H").tz_localize(
"Asia/Tokyo"
)
exp = Series(exp_values, name="XX")
tm.assert_series_equal(result, exp)
result = s.apply(lambda x: x.hour)
exp = Series(list(range(24)) + [0], name="XX", dtype=np.int32)
tm.assert_series_equal(result, exp)
# not vectorized
def f(x):
if not isinstance(x, pd.Timestamp):
raise ValueError
return str(x.tz)
result = s.map(f)
exp = Series(["Asia/Tokyo"] * 25, name="XX")
tm.assert_series_equal(result, exp)
def test_apply_categorical():
values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True)
ser = Series(values, name="XX", index=list("abcdefg"))
result = ser.apply(lambda x: x.lower())
# should be categorical dtype when the number of categories are
# the same
values = pd.Categorical(list("abbabcd"), categories=list("dcba"), ordered=True)
exp = Series(values, name="XX", index=list("abcdefg"))
tm.assert_series_equal(result, exp)
tm.assert_categorical_equal(result.values, exp.values)
result = ser.apply(lambda x: "A")
exp = Series(["A"] * 7, name="XX", index=list("abcdefg"))
tm.assert_series_equal(result, exp)
assert result.dtype == object
@pytest.mark.parametrize("series", [["1-1", "1-1", np.NaN], ["1-1", "1-2", np.NaN]])
def test_apply_categorical_with_nan_values(series):
# GH 20714 bug fixed in: GH 24275
s = Series(series, dtype="category")
result = s.apply(lambda x: x.split("-")[0])
result = result.astype(object)
expected = Series(["1", "1", np.NaN], dtype="category")
expected = expected.astype(object)
tm.assert_series_equal(result, expected)
def test_apply_empty_integer_series_with_datetime_index():
# GH 21245
s = Series([], index=pd.date_range(start="2018-01-01", periods=0), dtype=int)
result = s.apply(lambda x: x)
tm.assert_series_equal(result, s)
def test_transform(string_series):
# transforming functions
with np.errstate(all="ignore"):
f_sqrt = np.sqrt(string_series)
f_abs = np.abs(string_series)
# ufunc
result = string_series.apply(np.sqrt)
expected = f_sqrt.copy()
tm.assert_series_equal(result, expected)
# list-like
result = string_series.apply([np.sqrt])
expected = f_sqrt.to_frame().copy()
expected.columns = ["sqrt"]
tm.assert_frame_equal(result, expected)
result = string_series.apply(["sqrt"])
tm.assert_frame_equal(result, expected)
# multiple items in list
# these are in the order as if we are applying both functions per
# series and then concatting
expected = concat([f_sqrt, f_abs], axis=1)
expected.columns = ["sqrt", "absolute"]
result = string_series.apply([np.sqrt, np.abs])
tm.assert_frame_equal(result, expected)
# dict, provide renaming
expected = concat([f_sqrt, f_abs], axis=1)
expected.columns = ["foo", "bar"]
expected = expected.unstack().rename("series")
result = string_series.apply({"foo": np.sqrt, "bar": np.abs})
tm.assert_series_equal(result.reindex_like(expected), expected)
@pytest.mark.parametrize("op", series_transform_kernels)
def test_transform_partial_failure(op, request):
# GH 35964
if op in ("ffill", "bfill", "pad", "backfill", "shift"):
request.node.add_marker(
pytest.mark.xfail(reason=f"{op} is successful on any dtype")
)
# Using object makes most transform kernels fail
ser = Series(3 * [object])
if op in ("fillna", "ngroup"):
error = ValueError
msg = "Transform function failed"
else:
error = TypeError
msg = "|".join(
[
"not supported between instances of 'type' and 'type'",
"unsupported operand type",
]
)
with pytest.raises(error, match=msg):
ser.transform([op, "shift"])
with pytest.raises(error, match=msg):
ser.transform({"A": op, "B": "shift"})
with pytest.raises(error, match=msg):
ser.transform({"A": [op], "B": ["shift"]})
with pytest.raises(error, match=msg):
ser.transform({"A": [op, "shift"], "B": [op]})
def test_transform_partial_failure_valueerror():
# GH 40211
def noop(x):
return x
def raising_op(_):
raise ValueError
ser = Series(3 * [object])
msg = "Transform function failed"
with pytest.raises(ValueError, match=msg):
ser.transform([noop, raising_op])
with pytest.raises(ValueError, match=msg):
ser.transform({"A": raising_op, "B": noop})
with pytest.raises(ValueError, match=msg):
ser.transform({"A": [raising_op], "B": [noop]})
with pytest.raises(ValueError, match=msg):
ser.transform({"A": [noop, raising_op], "B": [noop]})
def test_demo():
# demonstration tests
s = Series(range(6), dtype="int64", name="series")
result = s.agg(["min", "max"])
expected = Series([0, 5], index=["min", "max"], name="series")
tm.assert_series_equal(result, expected)
result = s.agg({"foo": "min"})
expected = Series([0], index=["foo"], name="series")
tm.assert_series_equal(result, expected)
def test_agg_apply_evaluate_lambdas_the_same(string_series):
# test that we are evaluating row-by-row first
# before vectorized evaluation
result = string_series.apply(lambda x: str(x))
expected = string_series.agg(lambda x: str(x))
tm.assert_series_equal(result, expected)
result = string_series.apply(str)
expected = string_series.agg(str)
tm.assert_series_equal(result, expected)
def test_with_nested_series(datetime_series):
# GH 2316
# .agg with a reducer and a transform, what to do
result = datetime_series.apply(lambda x: Series([x, x**2], index=["x", "x^2"]))
expected = DataFrame({"x": datetime_series, "x^2": datetime_series**2})
tm.assert_frame_equal(result, expected)
result = datetime_series.agg(lambda x: Series([x, x**2], index=["x", "x^2"]))
tm.assert_frame_equal(result, expected)
def test_replicate_describe(string_series):
# this also tests a result set that is all scalars
expected = string_series.describe()
result = string_series.apply(
{
"count": "count",
"mean": "mean",
"std": "std",
"min": "min",
"25%": lambda x: x.quantile(0.25),
"50%": "median",
"75%": lambda x: x.quantile(0.75),
"max": "max",
}
)
tm.assert_series_equal(result, expected)
def test_reduce(string_series):
# reductions with named functions
result = string_series.agg(["sum", "mean"])
expected = Series(
[string_series.sum(), string_series.mean()],
["sum", "mean"],
name=string_series.name,
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("how", ["agg", "apply"])
def test_non_callable_aggregates(how):
# test agg using non-callable series attributes
# GH 39116 - expand to apply
s = Series([1, 2, None])
# Calling agg w/ just a string arg same as calling s.arg
result = getattr(s, how)("size")
expected = s.size
assert result == expected
# test when mixed w/ callable reducers
result = getattr(s, how)(["size", "count", "mean"])
expected = Series({"size": 3.0, "count": 2.0, "mean": 1.5})
tm.assert_series_equal(result, expected)
def test_series_apply_no_suffix_index():
# GH36189
s = Series([4] * 3)
result = s.apply(["sum", lambda x: x.sum(), lambda x: x.sum()])
expected = Series([12, 12, 12], index=["sum", "<lambda>", "<lambda>"])
tm.assert_series_equal(result, expected)
def test_map(datetime_series):
index, data = tm.getMixedTypeDict()
source = Series(data["B"], index=data["C"])
target = Series(data["C"][:4], index=data["D"][:4])
merged = target.map(source)
for k, v in merged.items():
assert v == source[target[k]]
# input could be a dict
merged = target.map(source.to_dict())
for k, v in merged.items():
assert v == source[target[k]]
# function
result = datetime_series.map(lambda x: x * 2)
tm.assert_series_equal(result, datetime_series * 2)
# GH 10324
a = Series([1, 2, 3, 4])
b = Series(["even", "odd", "even", "odd"], dtype="category")
c = Series(["even", "odd", "even", "odd"])
exp = Series(["odd", "even", "odd", np.nan], dtype="category")
tm.assert_series_equal(a.map(b), exp)
exp = Series(["odd", "even", "odd", np.nan])
tm.assert_series_equal(a.map(c), exp)
a = Series(["a", "b", "c", "d"])
b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(["b", "c", "d", "e"]))
c = Series([1, 2, 3, 4], index=Index(["b", "c", "d", "e"]))
exp = Series([np.nan, 1, 2, 3])
tm.assert_series_equal(a.map(b), exp)
exp = Series([np.nan, 1, 2, 3])
tm.assert_series_equal(a.map(c), exp)
a = Series(["a", "b", "c", "d"])
b = Series(
["B", "C", "D", "E"],
dtype="category",
index=pd.CategoricalIndex(["b", "c", "d", "e"]),
)
c = Series(["B", "C", "D", "E"], index=Index(["b", "c", "d", "e"]))
exp = Series(
pd.Categorical([np.nan, "B", "C", "D"], categories=["B", "C", "D", "E"])
)
tm.assert_series_equal(a.map(b), exp)
exp = Series([np.nan, "B", "C", "D"])
tm.assert_series_equal(a.map(c), exp)
def test_map_empty(request, index):
if isinstance(index, MultiIndex):
request.node.add_marker(
pytest.mark.xfail(
reason="Initializing a Series from a MultiIndex is not supported"
)
)
s = Series(index)
result = s.map({})
expected = Series(np.nan, index=s.index)
tm.assert_series_equal(result, expected)
def test_map_compat():
# related GH 8024
s = Series([True, True, False], index=[1, 2, 3])
result = s.map({True: "foo", False: "bar"})
expected = Series(["foo", "foo", "bar"], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
def test_map_int():
left = Series({"a": 1.0, "b": 2.0, "c": 3.0, "d": 4})
right = Series({1: 11, 2: 22, 3: 33})
assert left.dtype == np.float_
assert issubclass(right.dtype.type, np.integer)
merged = left.map(right)
assert merged.dtype == np.float_
assert isna(merged["d"])
assert not isna(merged["c"])
def test_map_type_inference():
s = Series(range(3))
s2 = s.map(lambda x: np.where(x == 0, 0, 1))
assert issubclass(s2.dtype.type, np.integer)
def test_map_decimal(string_series):
result = string_series.map(lambda x: Decimal(str(x)))
assert result.dtype == np.object_
assert isinstance(result[0], Decimal)
def test_map_na_exclusion():
s = Series([1.5, np.nan, 3, np.nan, 5])
result = s.map(lambda x: x * 2, na_action="ignore")
exp = s * 2
tm.assert_series_equal(result, exp)
def test_map_dict_with_tuple_keys():
"""
Due to new MultiIndex-ing behaviour in v0.14.0,
dicts with tuple keys passed to map were being
converted to a multi-index, preventing tuple values
from being mapped properly.
"""
# GH 18496
df = DataFrame({"a": [(1,), (2,), (3, 4), (5, 6)]})
label_mappings = {(1,): "A", (2,): "B", (3, 4): "A", (5, 6): "B"}
df["labels"] = df["a"].map(label_mappings)
df["expected_labels"] = Series(["A", "B", "A", "B"], index=df.index)
# All labels should be filled now
tm.assert_series_equal(df["labels"], df["expected_labels"], check_names=False)
def test_map_counter():
s = Series(["a", "b", "c"], index=[1, 2, 3])
counter = Counter()
counter["b"] = 5
counter["c"] += 1
result = s.map(counter)
expected = Series([0, 5, 1], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
def test_map_defaultdict():
s = Series([1, 2, 3], index=["a", "b", "c"])
default_dict = defaultdict(lambda: "blank")
default_dict[1] = "stuff"
result = s.map(default_dict)
expected = Series(["stuff", "blank", "blank"], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)
def test_map_dict_na_key():
# https://github.com/pandas-dev/pandas/issues/17648
# Checks that np.nan key is appropriately mapped
s = Series([1, 2, np.nan])
expected = Series(["a", "b", "c"])
result = s.map({1: "a", 2: "b", np.nan: "c"})
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("na_action", [None, "ignore"])
def test_map_defaultdict_na_key(na_action):
# GH 48813
s = Series([1, 2, np.nan])
default_map = defaultdict(lambda: "missing", {1: "a", 2: "b", np.nan: "c"})
result = s.map(default_map, na_action=na_action)
expected = Series({0: "a", 1: "b", 2: "c" if na_action is None else np.nan})
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("na_action", [None, "ignore"])
def test_map_defaultdict_missing_key(na_action):
# GH 48813
s = Series([1, 2, np.nan])
default_map = defaultdict(lambda: "missing", {1: "a", 2: "b", 3: "c"})
result = s.map(default_map, na_action=na_action)
expected = Series({0: "a", 1: "b", 2: "missing" if na_action is None else np.nan})
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("na_action", [None, "ignore"])
def test_map_defaultdict_unmutated(na_action):
# GH 48813
s = Series([1, 2, np.nan])
default_map = defaultdict(lambda: "missing", {1: "a", 2: "b", np.nan: "c"})
expected_default_map = default_map.copy()
s.map(default_map, na_action=na_action)
assert default_map == expected_default_map
@pytest.mark.parametrize("arg_func", [dict, Series])
def test_map_dict_ignore_na(arg_func):
# GH#47527
mapping = arg_func({1: 10, np.nan: 42})
ser = Series([1, np.nan, 2])
result = ser.map(mapping, na_action="ignore")
expected = Series([10, np.nan, np.nan])
tm.assert_series_equal(result, expected)
def test_map_defaultdict_ignore_na():
# GH#47527
mapping = defaultdict(int, {1: 10, np.nan: 42})
ser = Series([1, np.nan, 2])
result = ser.map(mapping)
expected = Series([10, 42, 0])
tm.assert_series_equal(result, expected)
def test_map_categorical_na_ignore():
# GH#47527
values = pd.Categorical([1, np.nan, 2], categories=[10, 1])
ser = Series(values)
result = ser.map({1: 10, np.nan: 42})
expected = Series([10, np.nan, np.nan])
tm.assert_series_equal(result, expected)
def test_map_dict_subclass_with_missing():
"""
Test Series.map with a dictionary subclass that defines __missing__,
i.e. sets a default value (GH #15999).
"""
class DictWithMissing(dict):
def __missing__(self, key):
return "missing"
s = Series([1, 2, 3])
dictionary = DictWithMissing({3: "three"})
result = s.map(dictionary)
expected = Series(["missing", "missing", "three"])
tm.assert_series_equal(result, expected)
def test_map_dict_subclass_without_missing():
class DictWithoutMissing(dict):
pass
s = Series([1, 2, 3])
dictionary = DictWithoutMissing({3: "three"})
result = s.map(dictionary)
expected = Series([np.nan, np.nan, "three"])
tm.assert_series_equal(result, expected)
def test_map_abc_mapping(non_dict_mapping_subclass):
# https://github.com/pandas-dev/pandas/issues/29733
# Check collections.abc.Mapping support as mapper for Series.map
s = Series([1, 2, 3])
not_a_dictionary = non_dict_mapping_subclass({3: "three"})
result = s.map(not_a_dictionary)
expected = Series([np.nan, np.nan, "three"])
tm.assert_series_equal(result, expected)
def test_map_abc_mapping_with_missing(non_dict_mapping_subclass):
# https://github.com/pandas-dev/pandas/issues/29733
# Check collections.abc.Mapping support as mapper for Series.map
class NonDictMappingWithMissing(non_dict_mapping_subclass):
def __missing__(self, key):
return "missing"
s = Series([1, 2, 3])
not_a_dictionary = NonDictMappingWithMissing({3: "three"})
result = s.map(not_a_dictionary)
# __missing__ is a dict concept, not a Mapping concept,
# so it should not change the result!
expected = Series([np.nan, np.nan, "three"])
tm.assert_series_equal(result, expected)
def test_map_box():
vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]
s = Series(vals)
assert s.dtype == "datetime64[ns]"
# boxed value must be Timestamp instance
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
exp = Series(["Timestamp_1_None", "Timestamp_2_None"])
tm.assert_series_equal(res, exp)
vals = [
pd.Timestamp("2011-01-01", tz="US/Eastern"),
pd.Timestamp("2011-01-02", tz="US/Eastern"),
]
s = Series(vals)
assert s.dtype == "datetime64[ns, US/Eastern]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
exp = Series(["Timestamp_1_US/Eastern", "Timestamp_2_US/Eastern"])
tm.assert_series_equal(res, exp)
# timedelta
vals = [pd.Timedelta("1 days"), pd.Timedelta("2 days")]
s = Series(vals)
assert s.dtype == "timedelta64[ns]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.days}")
exp = Series(["Timedelta_1", "Timedelta_2"])
tm.assert_series_equal(res, exp)
# period
vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")]
s = Series(vals)
assert s.dtype == "Period[M]"
res = s.apply(lambda x: f"{type(x).__name__}_{x.freqstr}")
exp = Series(["Period_M", "Period_M"])
tm.assert_series_equal(res, exp)
def test_map_categorical():
values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True)
s = Series(values, name="XX", index=list("abcdefg"))
result = s.map(lambda x: x.lower())
exp_values = pd.Categorical(list("abbabcd"), categories=list("dcba"), ordered=True)
exp = Series(exp_values, name="XX", index=list("abcdefg"))
tm.assert_series_equal(result, exp)
tm.assert_categorical_equal(result.values, exp_values)
result = s.map(lambda x: "A")
exp = Series(["A"] * 7, name="XX", index=list("abcdefg"))
tm.assert_series_equal(result, exp)
assert result.dtype == object
def test_map_datetimetz():
values = pd.date_range("2011-01-01", "2011-01-02", freq="H").tz_localize(
"Asia/Tokyo"
)
s = Series(values, name="XX")
# keep tz
result = s.map(lambda x: x + pd.offsets.Day())
exp_values = pd.date_range("2011-01-02", "2011-01-03", freq="H").tz_localize(
"Asia/Tokyo"
)
exp = Series(exp_values, name="XX")
tm.assert_series_equal(result, exp)
result = s.map(lambda x: x.hour)
exp = Series(list(range(24)) + [0], name="XX", dtype=np.int32)
tm.assert_series_equal(result, exp)
# not vectorized
def f(x):
if not isinstance(x, pd.Timestamp):
raise ValueError
return str(x.tz)
result = s.map(f)
exp = Series(["Asia/Tokyo"] * 25, name="XX")
tm.assert_series_equal(result, exp)
@pytest.mark.parametrize(
"vals,mapping,exp",
[
(list("abc"), {np.nan: "not NaN"}, [np.nan] * 3 + ["not NaN"]),
(list("abc"), {"a": "a letter"}, ["a letter"] + [np.nan] * 3),
(list(range(3)), {0: 42}, [42] + [np.nan] * 3),
],
)
def test_map_missing_mixed(vals, mapping, exp):
# GH20495
s = Series(vals + [np.nan])
result = s.map(mapping)
tm.assert_series_equal(result, Series(exp))
@pytest.mark.parametrize(
"dti,exp",
[
(
Series([1, 2], index=pd.DatetimeIndex([0, 31536000000])),
DataFrame(np.repeat([[1, 2]], 2, axis=0), dtype="int64"),
),
(
tm.makeTimeSeries(nper=30),
DataFrame(np.repeat([[1, 2]], 30, axis=0), dtype="int64"),
),
],
)
@pytest.mark.parametrize("aware", [True, False])
def test_apply_series_on_date_time_index_aware_series(dti, exp, aware):
# GH 25959
# Calling apply on a localized time series should not cause an error
if aware:
index = dti.tz_localize("UTC").index
else:
index = dti.index
result = Series(index).apply(lambda x: Series([1, 2]))
tm.assert_frame_equal(result, exp)
def test_apply_scalar_on_date_time_index_aware_series():
# GH 25959
# Calling apply on a localized time series should not cause an error
series = tm.makeTimeSeries(nper=30).tz_localize("UTC")
result = Series(series.index).apply(lambda x: 1)
tm.assert_series_equal(result, Series(np.ones(30), dtype="int64"))
def test_map_float_to_string_precision():
# GH 13228
ser = Series(1 / 3)
result = ser.map(lambda val: str(val)).to_dict()
expected = {0: "0.3333333333333333"}
assert result == expected
def test_apply_to_timedelta():
list_of_valid_strings = ["00:00:01", "00:00:02"]
a = pd.to_timedelta(list_of_valid_strings)
b = Series(list_of_valid_strings).apply(pd.to_timedelta)
tm.assert_series_equal(Series(a), b)
list_of_strings = ["00:00:01", np.nan, pd.NaT, pd.NaT]
a = pd.to_timedelta(list_of_strings)
ser = Series(list_of_strings)
b = ser.apply(pd.to_timedelta)
tm.assert_series_equal(Series(a), b)
@pytest.mark.parametrize(
"ops, names",
[
([np.sum], ["sum"]),
([np.sum, np.mean], ["sum", "mean"]),
(np.array([np.sum]), ["sum"]),
(np.array([np.sum, np.mean]), ["sum", "mean"]),
],
)
@pytest.mark.parametrize("how", ["agg", "apply"])
def test_apply_listlike_reducer(string_series, ops, names, how):
# GH 39140
expected = Series({name: op(string_series) for name, op in zip(names, ops)})
expected.name = "series"
result = getattr(string_series, how)(ops)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ops",
[
{"A": np.sum},
{"A": np.sum, "B": np.mean},
Series({"A": np.sum}),
Series({"A": np.sum, "B": np.mean}),
],
)
@pytest.mark.parametrize("how", ["agg", "apply"])
def test_apply_dictlike_reducer(string_series, ops, how):
# GH 39140
expected = Series({name: op(string_series) for name, op in ops.items()})
expected.name = string_series.name
result = getattr(string_series, how)(ops)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ops, names",
[
([np.sqrt], ["sqrt"]),
([np.abs, np.sqrt], ["absolute", "sqrt"]),
(np.array([np.sqrt]), ["sqrt"]),
(np.array([np.abs, np.sqrt]), ["absolute", "sqrt"]),
],
)
def test_apply_listlike_transformer(string_series, ops, names):
# GH 39140
with np.errstate(all="ignore"):
expected = concat([op(string_series) for op in ops], axis=1)
expected.columns = names
result = string_series.apply(ops)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"ops",
[
{"A": np.sqrt},
{"A": np.sqrt, "B": np.exp},
Series({"A": np.sqrt}),
Series({"A": np.sqrt, "B": np.exp}),
],
)
def test_apply_dictlike_transformer(string_series, ops):
# GH 39140
with np.errstate(all="ignore"):
expected = concat({name: op(string_series) for name, op in ops.items()})
expected.name = string_series.name
result = string_series.apply(ops)
tm.assert_series_equal(result, expected)
def test_apply_retains_column_name():
# GH 16380
df = DataFrame({"x": range(3)}, Index(range(3), name="x"))
result = df.x.apply(lambda x: Series(range(x + 1), Index(range(x + 1), name="y")))
expected = DataFrame(
[[0.0, np.nan, np.nan], [0.0, 1.0, np.nan], [0.0, 1.0, 2.0]],
columns=Index(range(3), name="y"),
index=Index(range(3), name="x"),
)
tm.assert_frame_equal(result, expected)
def test_apply_type():
# GH 46719
s = Series([3, "string", float], index=["a", "b", "c"])
result = s.apply(type)
expected = Series([int, str, type], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)