957 lines
29 KiB
Python
957 lines
29 KiB
Python
from collections import (
|
|
Counter,
|
|
defaultdict,
|
|
)
|
|
from decimal import Decimal
|
|
import math
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
MultiIndex,
|
|
Series,
|
|
concat,
|
|
isna,
|
|
timedelta_range,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.tests.apply.common import series_transform_kernels
|
|
|
|
|
|
def test_series_map_box_timedelta():
|
|
# GH#11349
|
|
ser = Series(timedelta_range("1 day 1 s", periods=5, freq="h"))
|
|
|
|
def f(x):
|
|
return x.total_seconds()
|
|
|
|
ser.map(f)
|
|
ser.apply(f)
|
|
DataFrame(ser).applymap(f)
|
|
|
|
|
|
def test_apply(datetime_series):
|
|
with np.errstate(all="ignore"):
|
|
tm.assert_series_equal(datetime_series.apply(np.sqrt), np.sqrt(datetime_series))
|
|
|
|
# element-wise apply
|
|
tm.assert_series_equal(datetime_series.apply(math.exp), np.exp(datetime_series))
|
|
|
|
# empty series
|
|
s = Series(dtype=object, name="foo", index=Index([], name="bar"))
|
|
rs = s.apply(lambda x: x)
|
|
tm.assert_series_equal(s, rs)
|
|
|
|
# check all metadata (GH 9322)
|
|
assert s is not rs
|
|
assert s.index is rs.index
|
|
assert s.dtype == rs.dtype
|
|
assert s.name == rs.name
|
|
|
|
# index but no data
|
|
s = Series(index=[1, 2, 3], dtype=np.float64)
|
|
rs = s.apply(lambda x: x)
|
|
tm.assert_series_equal(s, rs)
|
|
|
|
|
|
def test_apply_same_length_inference_bug():
|
|
s = Series([1, 2])
|
|
|
|
def f(x):
|
|
return (x, x + 1)
|
|
|
|
result = s.apply(f)
|
|
expected = s.map(f)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
s = Series([1, 2, 3])
|
|
result = s.apply(f)
|
|
expected = s.map(f)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_apply_dont_convert_dtype():
|
|
s = Series(np.random.randn(10))
|
|
|
|
def f(x):
|
|
return x if x > 0 else np.nan
|
|
|
|
result = s.apply(f, convert_dtype=False)
|
|
assert result.dtype == object
|
|
|
|
|
|
def test_apply_args():
|
|
s = Series(["foo,bar"])
|
|
|
|
result = s.apply(str.split, args=(",",))
|
|
assert result[0] == ["foo", "bar"]
|
|
assert isinstance(result[0], list)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"args, kwargs, increment",
|
|
[((), {}, 0), ((), {"a": 1}, 1), ((2, 3), {}, 32), ((1,), {"c": 2}, 201)],
|
|
)
|
|
def test_agg_args(args, kwargs, increment):
|
|
# GH 43357
|
|
def f(x, a=0, b=0, c=0):
|
|
return x + a + 10 * b + 100 * c
|
|
|
|
s = Series([1, 2])
|
|
result = s.agg(f, 0, *args, **kwargs)
|
|
expected = s + increment
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_agg_list_like_func_with_args():
|
|
# GH 50624
|
|
|
|
s = Series([1, 2, 3])
|
|
|
|
def foo1(x, a=1, c=0):
|
|
return x + a + c
|
|
|
|
def foo2(x, b=2, c=0):
|
|
return x + b + c
|
|
|
|
msg = r"foo1\(\) got an unexpected keyword argument 'b'"
|
|
with pytest.raises(TypeError, match=msg):
|
|
s.agg([foo1, foo2], 0, 3, b=3, c=4)
|
|
|
|
result = s.agg([foo1, foo2], 0, 3, c=4)
|
|
expected = DataFrame({"foo1": [8, 9, 10], "foo2": [8, 9, 10]})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_series_map_box_timestamps():
|
|
# GH#2689, GH#2627
|
|
ser = Series(pd.date_range("1/1/2000", periods=10))
|
|
|
|
def func(x):
|
|
return (x.hour, x.day, x.month)
|
|
|
|
# it works!
|
|
ser.map(func)
|
|
ser.apply(func)
|
|
|
|
|
|
def test_series_map_stringdtype(any_string_dtype):
|
|
# map test on StringDType, GH#40823
|
|
ser1 = Series(
|
|
data=["cat", "dog", "rabbit"],
|
|
index=["id1", "id2", "id3"],
|
|
dtype=any_string_dtype,
|
|
)
|
|
ser2 = Series(data=["id3", "id2", "id1", "id7000"], dtype=any_string_dtype)
|
|
result = ser2.map(ser1)
|
|
expected = Series(data=["rabbit", "dog", "cat", pd.NA], dtype=any_string_dtype)
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_apply_box():
|
|
# ufunc will not be boxed. Same test cases as the test_map_box
|
|
vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]
|
|
s = Series(vals)
|
|
assert s.dtype == "datetime64[ns]"
|
|
# boxed value must be Timestamp instance
|
|
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
|
|
exp = Series(["Timestamp_1_None", "Timestamp_2_None"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
vals = [
|
|
pd.Timestamp("2011-01-01", tz="US/Eastern"),
|
|
pd.Timestamp("2011-01-02", tz="US/Eastern"),
|
|
]
|
|
s = Series(vals)
|
|
assert s.dtype == "datetime64[ns, US/Eastern]"
|
|
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
|
|
exp = Series(["Timestamp_1_US/Eastern", "Timestamp_2_US/Eastern"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
# timedelta
|
|
vals = [pd.Timedelta("1 days"), pd.Timedelta("2 days")]
|
|
s = Series(vals)
|
|
assert s.dtype == "timedelta64[ns]"
|
|
res = s.apply(lambda x: f"{type(x).__name__}_{x.days}")
|
|
exp = Series(["Timedelta_1", "Timedelta_2"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
# period
|
|
vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")]
|
|
s = Series(vals)
|
|
assert s.dtype == "Period[M]"
|
|
res = s.apply(lambda x: f"{type(x).__name__}_{x.freqstr}")
|
|
exp = Series(["Period_M", "Period_M"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
|
|
def test_apply_datetimetz():
|
|
values = pd.date_range("2011-01-01", "2011-01-02", freq="H").tz_localize(
|
|
"Asia/Tokyo"
|
|
)
|
|
s = Series(values, name="XX")
|
|
|
|
result = s.apply(lambda x: x + pd.offsets.Day())
|
|
exp_values = pd.date_range("2011-01-02", "2011-01-03", freq="H").tz_localize(
|
|
"Asia/Tokyo"
|
|
)
|
|
exp = Series(exp_values, name="XX")
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
result = s.apply(lambda x: x.hour)
|
|
exp = Series(list(range(24)) + [0], name="XX", dtype=np.int32)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
# not vectorized
|
|
def f(x):
|
|
if not isinstance(x, pd.Timestamp):
|
|
raise ValueError
|
|
return str(x.tz)
|
|
|
|
result = s.map(f)
|
|
exp = Series(["Asia/Tokyo"] * 25, name="XX")
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
def test_apply_categorical():
|
|
values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True)
|
|
ser = Series(values, name="XX", index=list("abcdefg"))
|
|
result = ser.apply(lambda x: x.lower())
|
|
|
|
# should be categorical dtype when the number of categories are
|
|
# the same
|
|
values = pd.Categorical(list("abbabcd"), categories=list("dcba"), ordered=True)
|
|
exp = Series(values, name="XX", index=list("abcdefg"))
|
|
tm.assert_series_equal(result, exp)
|
|
tm.assert_categorical_equal(result.values, exp.values)
|
|
|
|
result = ser.apply(lambda x: "A")
|
|
exp = Series(["A"] * 7, name="XX", index=list("abcdefg"))
|
|
tm.assert_series_equal(result, exp)
|
|
assert result.dtype == object
|
|
|
|
|
|
@pytest.mark.parametrize("series", [["1-1", "1-1", np.NaN], ["1-1", "1-2", np.NaN]])
|
|
def test_apply_categorical_with_nan_values(series):
|
|
# GH 20714 bug fixed in: GH 24275
|
|
s = Series(series, dtype="category")
|
|
result = s.apply(lambda x: x.split("-")[0])
|
|
result = result.astype(object)
|
|
expected = Series(["1", "1", np.NaN], dtype="category")
|
|
expected = expected.astype(object)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_apply_empty_integer_series_with_datetime_index():
|
|
# GH 21245
|
|
s = Series([], index=pd.date_range(start="2018-01-01", periods=0), dtype=int)
|
|
result = s.apply(lambda x: x)
|
|
tm.assert_series_equal(result, s)
|
|
|
|
|
|
def test_transform(string_series):
|
|
# transforming functions
|
|
|
|
with np.errstate(all="ignore"):
|
|
f_sqrt = np.sqrt(string_series)
|
|
f_abs = np.abs(string_series)
|
|
|
|
# ufunc
|
|
result = string_series.apply(np.sqrt)
|
|
expected = f_sqrt.copy()
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# list-like
|
|
result = string_series.apply([np.sqrt])
|
|
expected = f_sqrt.to_frame().copy()
|
|
expected.columns = ["sqrt"]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = string_series.apply(["sqrt"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# multiple items in list
|
|
# these are in the order as if we are applying both functions per
|
|
# series and then concatting
|
|
expected = concat([f_sqrt, f_abs], axis=1)
|
|
expected.columns = ["sqrt", "absolute"]
|
|
result = string_series.apply([np.sqrt, np.abs])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# dict, provide renaming
|
|
expected = concat([f_sqrt, f_abs], axis=1)
|
|
expected.columns = ["foo", "bar"]
|
|
expected = expected.unstack().rename("series")
|
|
|
|
result = string_series.apply({"foo": np.sqrt, "bar": np.abs})
|
|
tm.assert_series_equal(result.reindex_like(expected), expected)
|
|
|
|
|
|
@pytest.mark.parametrize("op", series_transform_kernels)
|
|
def test_transform_partial_failure(op, request):
|
|
# GH 35964
|
|
if op in ("ffill", "bfill", "pad", "backfill", "shift"):
|
|
request.node.add_marker(
|
|
pytest.mark.xfail(reason=f"{op} is successful on any dtype")
|
|
)
|
|
|
|
# Using object makes most transform kernels fail
|
|
ser = Series(3 * [object])
|
|
|
|
if op in ("fillna", "ngroup"):
|
|
error = ValueError
|
|
msg = "Transform function failed"
|
|
else:
|
|
error = TypeError
|
|
msg = "|".join(
|
|
[
|
|
"not supported between instances of 'type' and 'type'",
|
|
"unsupported operand type",
|
|
]
|
|
)
|
|
|
|
with pytest.raises(error, match=msg):
|
|
ser.transform([op, "shift"])
|
|
|
|
with pytest.raises(error, match=msg):
|
|
ser.transform({"A": op, "B": "shift"})
|
|
|
|
with pytest.raises(error, match=msg):
|
|
ser.transform({"A": [op], "B": ["shift"]})
|
|
|
|
with pytest.raises(error, match=msg):
|
|
ser.transform({"A": [op, "shift"], "B": [op]})
|
|
|
|
|
|
def test_transform_partial_failure_valueerror():
|
|
# GH 40211
|
|
def noop(x):
|
|
return x
|
|
|
|
def raising_op(_):
|
|
raise ValueError
|
|
|
|
ser = Series(3 * [object])
|
|
msg = "Transform function failed"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.transform([noop, raising_op])
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.transform({"A": raising_op, "B": noop})
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.transform({"A": [raising_op], "B": [noop]})
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.transform({"A": [noop, raising_op], "B": [noop]})
|
|
|
|
|
|
def test_demo():
|
|
# demonstration tests
|
|
s = Series(range(6), dtype="int64", name="series")
|
|
|
|
result = s.agg(["min", "max"])
|
|
expected = Series([0, 5], index=["min", "max"], name="series")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.agg({"foo": "min"})
|
|
expected = Series([0], index=["foo"], name="series")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_agg_apply_evaluate_lambdas_the_same(string_series):
|
|
# test that we are evaluating row-by-row first
|
|
# before vectorized evaluation
|
|
result = string_series.apply(lambda x: str(x))
|
|
expected = string_series.agg(lambda x: str(x))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = string_series.apply(str)
|
|
expected = string_series.agg(str)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_with_nested_series(datetime_series):
|
|
# GH 2316
|
|
# .agg with a reducer and a transform, what to do
|
|
result = datetime_series.apply(lambda x: Series([x, x**2], index=["x", "x^2"]))
|
|
expected = DataFrame({"x": datetime_series, "x^2": datetime_series**2})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = datetime_series.agg(lambda x: Series([x, x**2], index=["x", "x^2"]))
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_replicate_describe(string_series):
|
|
# this also tests a result set that is all scalars
|
|
expected = string_series.describe()
|
|
result = string_series.apply(
|
|
{
|
|
"count": "count",
|
|
"mean": "mean",
|
|
"std": "std",
|
|
"min": "min",
|
|
"25%": lambda x: x.quantile(0.25),
|
|
"50%": "median",
|
|
"75%": lambda x: x.quantile(0.75),
|
|
"max": "max",
|
|
}
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_reduce(string_series):
|
|
# reductions with named functions
|
|
result = string_series.agg(["sum", "mean"])
|
|
expected = Series(
|
|
[string_series.sum(), string_series.mean()],
|
|
["sum", "mean"],
|
|
name=string_series.name,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("how", ["agg", "apply"])
|
|
def test_non_callable_aggregates(how):
|
|
# test agg using non-callable series attributes
|
|
# GH 39116 - expand to apply
|
|
s = Series([1, 2, None])
|
|
|
|
# Calling agg w/ just a string arg same as calling s.arg
|
|
result = getattr(s, how)("size")
|
|
expected = s.size
|
|
assert result == expected
|
|
|
|
# test when mixed w/ callable reducers
|
|
result = getattr(s, how)(["size", "count", "mean"])
|
|
expected = Series({"size": 3.0, "count": 2.0, "mean": 1.5})
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_series_apply_no_suffix_index():
|
|
# GH36189
|
|
s = Series([4] * 3)
|
|
result = s.apply(["sum", lambda x: x.sum(), lambda x: x.sum()])
|
|
expected = Series([12, 12, 12], index=["sum", "<lambda>", "<lambda>"])
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map(datetime_series):
|
|
index, data = tm.getMixedTypeDict()
|
|
|
|
source = Series(data["B"], index=data["C"])
|
|
target = Series(data["C"][:4], index=data["D"][:4])
|
|
|
|
merged = target.map(source)
|
|
|
|
for k, v in merged.items():
|
|
assert v == source[target[k]]
|
|
|
|
# input could be a dict
|
|
merged = target.map(source.to_dict())
|
|
|
|
for k, v in merged.items():
|
|
assert v == source[target[k]]
|
|
|
|
# function
|
|
result = datetime_series.map(lambda x: x * 2)
|
|
tm.assert_series_equal(result, datetime_series * 2)
|
|
|
|
# GH 10324
|
|
a = Series([1, 2, 3, 4])
|
|
b = Series(["even", "odd", "even", "odd"], dtype="category")
|
|
c = Series(["even", "odd", "even", "odd"])
|
|
|
|
exp = Series(["odd", "even", "odd", np.nan], dtype="category")
|
|
tm.assert_series_equal(a.map(b), exp)
|
|
exp = Series(["odd", "even", "odd", np.nan])
|
|
tm.assert_series_equal(a.map(c), exp)
|
|
|
|
a = Series(["a", "b", "c", "d"])
|
|
b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(["b", "c", "d", "e"]))
|
|
c = Series([1, 2, 3, 4], index=Index(["b", "c", "d", "e"]))
|
|
|
|
exp = Series([np.nan, 1, 2, 3])
|
|
tm.assert_series_equal(a.map(b), exp)
|
|
exp = Series([np.nan, 1, 2, 3])
|
|
tm.assert_series_equal(a.map(c), exp)
|
|
|
|
a = Series(["a", "b", "c", "d"])
|
|
b = Series(
|
|
["B", "C", "D", "E"],
|
|
dtype="category",
|
|
index=pd.CategoricalIndex(["b", "c", "d", "e"]),
|
|
)
|
|
c = Series(["B", "C", "D", "E"], index=Index(["b", "c", "d", "e"]))
|
|
|
|
exp = Series(
|
|
pd.Categorical([np.nan, "B", "C", "D"], categories=["B", "C", "D", "E"])
|
|
)
|
|
tm.assert_series_equal(a.map(b), exp)
|
|
exp = Series([np.nan, "B", "C", "D"])
|
|
tm.assert_series_equal(a.map(c), exp)
|
|
|
|
|
|
def test_map_empty(request, index):
|
|
if isinstance(index, MultiIndex):
|
|
request.node.add_marker(
|
|
pytest.mark.xfail(
|
|
reason="Initializing a Series from a MultiIndex is not supported"
|
|
)
|
|
)
|
|
|
|
s = Series(index)
|
|
result = s.map({})
|
|
|
|
expected = Series(np.nan, index=s.index)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map_compat():
|
|
# related GH 8024
|
|
s = Series([True, True, False], index=[1, 2, 3])
|
|
result = s.map({True: "foo", False: "bar"})
|
|
expected = Series(["foo", "foo", "bar"], index=[1, 2, 3])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map_int():
|
|
left = Series({"a": 1.0, "b": 2.0, "c": 3.0, "d": 4})
|
|
right = Series({1: 11, 2: 22, 3: 33})
|
|
|
|
assert left.dtype == np.float_
|
|
assert issubclass(right.dtype.type, np.integer)
|
|
|
|
merged = left.map(right)
|
|
assert merged.dtype == np.float_
|
|
assert isna(merged["d"])
|
|
assert not isna(merged["c"])
|
|
|
|
|
|
def test_map_type_inference():
|
|
s = Series(range(3))
|
|
s2 = s.map(lambda x: np.where(x == 0, 0, 1))
|
|
assert issubclass(s2.dtype.type, np.integer)
|
|
|
|
|
|
def test_map_decimal(string_series):
|
|
result = string_series.map(lambda x: Decimal(str(x)))
|
|
assert result.dtype == np.object_
|
|
assert isinstance(result[0], Decimal)
|
|
|
|
|
|
def test_map_na_exclusion():
|
|
s = Series([1.5, np.nan, 3, np.nan, 5])
|
|
|
|
result = s.map(lambda x: x * 2, na_action="ignore")
|
|
exp = s * 2
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
def test_map_dict_with_tuple_keys():
|
|
"""
|
|
Due to new MultiIndex-ing behaviour in v0.14.0,
|
|
dicts with tuple keys passed to map were being
|
|
converted to a multi-index, preventing tuple values
|
|
from being mapped properly.
|
|
"""
|
|
# GH 18496
|
|
df = DataFrame({"a": [(1,), (2,), (3, 4), (5, 6)]})
|
|
label_mappings = {(1,): "A", (2,): "B", (3, 4): "A", (5, 6): "B"}
|
|
|
|
df["labels"] = df["a"].map(label_mappings)
|
|
df["expected_labels"] = Series(["A", "B", "A", "B"], index=df.index)
|
|
# All labels should be filled now
|
|
tm.assert_series_equal(df["labels"], df["expected_labels"], check_names=False)
|
|
|
|
|
|
def test_map_counter():
|
|
s = Series(["a", "b", "c"], index=[1, 2, 3])
|
|
counter = Counter()
|
|
counter["b"] = 5
|
|
counter["c"] += 1
|
|
result = s.map(counter)
|
|
expected = Series([0, 5, 1], index=[1, 2, 3])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map_defaultdict():
|
|
s = Series([1, 2, 3], index=["a", "b", "c"])
|
|
default_dict = defaultdict(lambda: "blank")
|
|
default_dict[1] = "stuff"
|
|
result = s.map(default_dict)
|
|
expected = Series(["stuff", "blank", "blank"], index=["a", "b", "c"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map_dict_na_key():
|
|
# https://github.com/pandas-dev/pandas/issues/17648
|
|
# Checks that np.nan key is appropriately mapped
|
|
s = Series([1, 2, np.nan])
|
|
expected = Series(["a", "b", "c"])
|
|
result = s.map({1: "a", 2: "b", np.nan: "c"})
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("na_action", [None, "ignore"])
|
|
def test_map_defaultdict_na_key(na_action):
|
|
# GH 48813
|
|
s = Series([1, 2, np.nan])
|
|
default_map = defaultdict(lambda: "missing", {1: "a", 2: "b", np.nan: "c"})
|
|
result = s.map(default_map, na_action=na_action)
|
|
expected = Series({0: "a", 1: "b", 2: "c" if na_action is None else np.nan})
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("na_action", [None, "ignore"])
|
|
def test_map_defaultdict_missing_key(na_action):
|
|
# GH 48813
|
|
s = Series([1, 2, np.nan])
|
|
default_map = defaultdict(lambda: "missing", {1: "a", 2: "b", 3: "c"})
|
|
result = s.map(default_map, na_action=na_action)
|
|
expected = Series({0: "a", 1: "b", 2: "missing" if na_action is None else np.nan})
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("na_action", [None, "ignore"])
|
|
def test_map_defaultdict_unmutated(na_action):
|
|
# GH 48813
|
|
s = Series([1, 2, np.nan])
|
|
default_map = defaultdict(lambda: "missing", {1: "a", 2: "b", np.nan: "c"})
|
|
expected_default_map = default_map.copy()
|
|
s.map(default_map, na_action=na_action)
|
|
assert default_map == expected_default_map
|
|
|
|
|
|
@pytest.mark.parametrize("arg_func", [dict, Series])
|
|
def test_map_dict_ignore_na(arg_func):
|
|
# GH#47527
|
|
mapping = arg_func({1: 10, np.nan: 42})
|
|
ser = Series([1, np.nan, 2])
|
|
result = ser.map(mapping, na_action="ignore")
|
|
expected = Series([10, np.nan, np.nan])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map_defaultdict_ignore_na():
|
|
# GH#47527
|
|
mapping = defaultdict(int, {1: 10, np.nan: 42})
|
|
ser = Series([1, np.nan, 2])
|
|
result = ser.map(mapping)
|
|
expected = Series([10, 42, 0])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map_categorical_na_ignore():
|
|
# GH#47527
|
|
values = pd.Categorical([1, np.nan, 2], categories=[10, 1])
|
|
ser = Series(values)
|
|
result = ser.map({1: 10, np.nan: 42})
|
|
expected = Series([10, np.nan, np.nan])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map_dict_subclass_with_missing():
|
|
"""
|
|
Test Series.map with a dictionary subclass that defines __missing__,
|
|
i.e. sets a default value (GH #15999).
|
|
"""
|
|
|
|
class DictWithMissing(dict):
|
|
def __missing__(self, key):
|
|
return "missing"
|
|
|
|
s = Series([1, 2, 3])
|
|
dictionary = DictWithMissing({3: "three"})
|
|
result = s.map(dictionary)
|
|
expected = Series(["missing", "missing", "three"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map_dict_subclass_without_missing():
|
|
class DictWithoutMissing(dict):
|
|
pass
|
|
|
|
s = Series([1, 2, 3])
|
|
dictionary = DictWithoutMissing({3: "three"})
|
|
result = s.map(dictionary)
|
|
expected = Series([np.nan, np.nan, "three"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map_abc_mapping(non_dict_mapping_subclass):
|
|
# https://github.com/pandas-dev/pandas/issues/29733
|
|
# Check collections.abc.Mapping support as mapper for Series.map
|
|
s = Series([1, 2, 3])
|
|
not_a_dictionary = non_dict_mapping_subclass({3: "three"})
|
|
result = s.map(not_a_dictionary)
|
|
expected = Series([np.nan, np.nan, "three"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map_abc_mapping_with_missing(non_dict_mapping_subclass):
|
|
# https://github.com/pandas-dev/pandas/issues/29733
|
|
# Check collections.abc.Mapping support as mapper for Series.map
|
|
class NonDictMappingWithMissing(non_dict_mapping_subclass):
|
|
def __missing__(self, key):
|
|
return "missing"
|
|
|
|
s = Series([1, 2, 3])
|
|
not_a_dictionary = NonDictMappingWithMissing({3: "three"})
|
|
result = s.map(not_a_dictionary)
|
|
# __missing__ is a dict concept, not a Mapping concept,
|
|
# so it should not change the result!
|
|
expected = Series([np.nan, np.nan, "three"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_map_box():
|
|
vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]
|
|
s = Series(vals)
|
|
assert s.dtype == "datetime64[ns]"
|
|
# boxed value must be Timestamp instance
|
|
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
|
|
exp = Series(["Timestamp_1_None", "Timestamp_2_None"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
vals = [
|
|
pd.Timestamp("2011-01-01", tz="US/Eastern"),
|
|
pd.Timestamp("2011-01-02", tz="US/Eastern"),
|
|
]
|
|
s = Series(vals)
|
|
assert s.dtype == "datetime64[ns, US/Eastern]"
|
|
res = s.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}")
|
|
exp = Series(["Timestamp_1_US/Eastern", "Timestamp_2_US/Eastern"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
# timedelta
|
|
vals = [pd.Timedelta("1 days"), pd.Timedelta("2 days")]
|
|
s = Series(vals)
|
|
assert s.dtype == "timedelta64[ns]"
|
|
res = s.apply(lambda x: f"{type(x).__name__}_{x.days}")
|
|
exp = Series(["Timedelta_1", "Timedelta_2"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
# period
|
|
vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")]
|
|
s = Series(vals)
|
|
assert s.dtype == "Period[M]"
|
|
res = s.apply(lambda x: f"{type(x).__name__}_{x.freqstr}")
|
|
exp = Series(["Period_M", "Period_M"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
|
|
def test_map_categorical():
|
|
values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True)
|
|
s = Series(values, name="XX", index=list("abcdefg"))
|
|
|
|
result = s.map(lambda x: x.lower())
|
|
exp_values = pd.Categorical(list("abbabcd"), categories=list("dcba"), ordered=True)
|
|
exp = Series(exp_values, name="XX", index=list("abcdefg"))
|
|
tm.assert_series_equal(result, exp)
|
|
tm.assert_categorical_equal(result.values, exp_values)
|
|
|
|
result = s.map(lambda x: "A")
|
|
exp = Series(["A"] * 7, name="XX", index=list("abcdefg"))
|
|
tm.assert_series_equal(result, exp)
|
|
assert result.dtype == object
|
|
|
|
|
|
def test_map_datetimetz():
|
|
values = pd.date_range("2011-01-01", "2011-01-02", freq="H").tz_localize(
|
|
"Asia/Tokyo"
|
|
)
|
|
s = Series(values, name="XX")
|
|
|
|
# keep tz
|
|
result = s.map(lambda x: x + pd.offsets.Day())
|
|
exp_values = pd.date_range("2011-01-02", "2011-01-03", freq="H").tz_localize(
|
|
"Asia/Tokyo"
|
|
)
|
|
exp = Series(exp_values, name="XX")
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
result = s.map(lambda x: x.hour)
|
|
exp = Series(list(range(24)) + [0], name="XX", dtype=np.int32)
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
# not vectorized
|
|
def f(x):
|
|
if not isinstance(x, pd.Timestamp):
|
|
raise ValueError
|
|
return str(x.tz)
|
|
|
|
result = s.map(f)
|
|
exp = Series(["Asia/Tokyo"] * 25, name="XX")
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"vals,mapping,exp",
|
|
[
|
|
(list("abc"), {np.nan: "not NaN"}, [np.nan] * 3 + ["not NaN"]),
|
|
(list("abc"), {"a": "a letter"}, ["a letter"] + [np.nan] * 3),
|
|
(list(range(3)), {0: 42}, [42] + [np.nan] * 3),
|
|
],
|
|
)
|
|
def test_map_missing_mixed(vals, mapping, exp):
|
|
# GH20495
|
|
s = Series(vals + [np.nan])
|
|
result = s.map(mapping)
|
|
|
|
tm.assert_series_equal(result, Series(exp))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dti,exp",
|
|
[
|
|
(
|
|
Series([1, 2], index=pd.DatetimeIndex([0, 31536000000])),
|
|
DataFrame(np.repeat([[1, 2]], 2, axis=0), dtype="int64"),
|
|
),
|
|
(
|
|
tm.makeTimeSeries(nper=30),
|
|
DataFrame(np.repeat([[1, 2]], 30, axis=0), dtype="int64"),
|
|
),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("aware", [True, False])
|
|
def test_apply_series_on_date_time_index_aware_series(dti, exp, aware):
|
|
# GH 25959
|
|
# Calling apply on a localized time series should not cause an error
|
|
if aware:
|
|
index = dti.tz_localize("UTC").index
|
|
else:
|
|
index = dti.index
|
|
result = Series(index).apply(lambda x: Series([1, 2]))
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
|
|
def test_apply_scalar_on_date_time_index_aware_series():
|
|
# GH 25959
|
|
# Calling apply on a localized time series should not cause an error
|
|
series = tm.makeTimeSeries(nper=30).tz_localize("UTC")
|
|
result = Series(series.index).apply(lambda x: 1)
|
|
tm.assert_series_equal(result, Series(np.ones(30), dtype="int64"))
|
|
|
|
|
|
def test_map_float_to_string_precision():
|
|
# GH 13228
|
|
ser = Series(1 / 3)
|
|
result = ser.map(lambda val: str(val)).to_dict()
|
|
expected = {0: "0.3333333333333333"}
|
|
assert result == expected
|
|
|
|
|
|
def test_apply_to_timedelta():
|
|
list_of_valid_strings = ["00:00:01", "00:00:02"]
|
|
a = pd.to_timedelta(list_of_valid_strings)
|
|
b = Series(list_of_valid_strings).apply(pd.to_timedelta)
|
|
tm.assert_series_equal(Series(a), b)
|
|
|
|
list_of_strings = ["00:00:01", np.nan, pd.NaT, pd.NaT]
|
|
|
|
a = pd.to_timedelta(list_of_strings)
|
|
ser = Series(list_of_strings)
|
|
b = ser.apply(pd.to_timedelta)
|
|
tm.assert_series_equal(Series(a), b)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops, names",
|
|
[
|
|
([np.sum], ["sum"]),
|
|
([np.sum, np.mean], ["sum", "mean"]),
|
|
(np.array([np.sum]), ["sum"]),
|
|
(np.array([np.sum, np.mean]), ["sum", "mean"]),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("how", ["agg", "apply"])
|
|
def test_apply_listlike_reducer(string_series, ops, names, how):
|
|
# GH 39140
|
|
expected = Series({name: op(string_series) for name, op in zip(names, ops)})
|
|
expected.name = "series"
|
|
result = getattr(string_series, how)(ops)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops",
|
|
[
|
|
{"A": np.sum},
|
|
{"A": np.sum, "B": np.mean},
|
|
Series({"A": np.sum}),
|
|
Series({"A": np.sum, "B": np.mean}),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("how", ["agg", "apply"])
|
|
def test_apply_dictlike_reducer(string_series, ops, how):
|
|
# GH 39140
|
|
expected = Series({name: op(string_series) for name, op in ops.items()})
|
|
expected.name = string_series.name
|
|
result = getattr(string_series, how)(ops)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops, names",
|
|
[
|
|
([np.sqrt], ["sqrt"]),
|
|
([np.abs, np.sqrt], ["absolute", "sqrt"]),
|
|
(np.array([np.sqrt]), ["sqrt"]),
|
|
(np.array([np.abs, np.sqrt]), ["absolute", "sqrt"]),
|
|
],
|
|
)
|
|
def test_apply_listlike_transformer(string_series, ops, names):
|
|
# GH 39140
|
|
with np.errstate(all="ignore"):
|
|
expected = concat([op(string_series) for op in ops], axis=1)
|
|
expected.columns = names
|
|
result = string_series.apply(ops)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops",
|
|
[
|
|
{"A": np.sqrt},
|
|
{"A": np.sqrt, "B": np.exp},
|
|
Series({"A": np.sqrt}),
|
|
Series({"A": np.sqrt, "B": np.exp}),
|
|
],
|
|
)
|
|
def test_apply_dictlike_transformer(string_series, ops):
|
|
# GH 39140
|
|
with np.errstate(all="ignore"):
|
|
expected = concat({name: op(string_series) for name, op in ops.items()})
|
|
expected.name = string_series.name
|
|
result = string_series.apply(ops)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_apply_retains_column_name():
|
|
# GH 16380
|
|
df = DataFrame({"x": range(3)}, Index(range(3), name="x"))
|
|
result = df.x.apply(lambda x: Series(range(x + 1), Index(range(x + 1), name="y")))
|
|
expected = DataFrame(
|
|
[[0.0, np.nan, np.nan], [0.0, 1.0, np.nan], [0.0, 1.0, 2.0]],
|
|
columns=Index(range(3), name="y"),
|
|
index=Index(range(3), name="x"),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_apply_type():
|
|
# GH 46719
|
|
s = Series([3, "string", float], index=["a", "b", "c"])
|
|
result = s.apply(type)
|
|
expected = Series([int, str, type], index=["a", "b", "c"])
|
|
tm.assert_series_equal(result, expected)
|