Inzynierka/Lib/site-packages/pandas/tests/series/methods/test_value_counts.py

253 lines
9.2 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
import numpy as np
import pytest
import pandas as pd
from pandas import (
Categorical,
CategoricalIndex,
Index,
Series,
)
import pandas._testing as tm
class TestSeriesValueCounts:
def test_value_counts_datetime(self):
# most dtypes are tested in tests/base
values = [
pd.Timestamp("2011-01-01 09:00"),
pd.Timestamp("2011-01-01 10:00"),
pd.Timestamp("2011-01-01 11:00"),
pd.Timestamp("2011-01-01 09:00"),
pd.Timestamp("2011-01-01 09:00"),
pd.Timestamp("2011-01-01 11:00"),
]
exp_idx = pd.DatetimeIndex(
["2011-01-01 09:00", "2011-01-01 11:00", "2011-01-01 10:00"],
name="xxx",
)
exp = Series([3, 2, 1], index=exp_idx, name="count")
ser = Series(values, name="xxx")
tm.assert_series_equal(ser.value_counts(), exp)
# check DatetimeIndex outputs the same result
idx = pd.DatetimeIndex(values, name="xxx")
tm.assert_series_equal(idx.value_counts(), exp)
# normalize
exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion")
tm.assert_series_equal(ser.value_counts(normalize=True), exp)
tm.assert_series_equal(idx.value_counts(normalize=True), exp)
def test_value_counts_datetime_tz(self):
values = [
pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"),
pd.Timestamp("2011-01-01 10:00", tz="US/Eastern"),
pd.Timestamp("2011-01-01 11:00", tz="US/Eastern"),
pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"),
pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"),
pd.Timestamp("2011-01-01 11:00", tz="US/Eastern"),
]
exp_idx = pd.DatetimeIndex(
["2011-01-01 09:00", "2011-01-01 11:00", "2011-01-01 10:00"],
tz="US/Eastern",
name="xxx",
)
exp = Series([3, 2, 1], index=exp_idx, name="count")
ser = Series(values, name="xxx")
tm.assert_series_equal(ser.value_counts(), exp)
idx = pd.DatetimeIndex(values, name="xxx")
tm.assert_series_equal(idx.value_counts(), exp)
exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion")
tm.assert_series_equal(ser.value_counts(normalize=True), exp)
tm.assert_series_equal(idx.value_counts(normalize=True), exp)
def test_value_counts_period(self):
values = [
pd.Period("2011-01", freq="M"),
pd.Period("2011-02", freq="M"),
pd.Period("2011-03", freq="M"),
pd.Period("2011-01", freq="M"),
pd.Period("2011-01", freq="M"),
pd.Period("2011-03", freq="M"),
]
exp_idx = pd.PeriodIndex(
["2011-01", "2011-03", "2011-02"], freq="M", name="xxx"
)
exp = Series([3, 2, 1], index=exp_idx, name="count")
ser = Series(values, name="xxx")
tm.assert_series_equal(ser.value_counts(), exp)
# check DatetimeIndex outputs the same result
idx = pd.PeriodIndex(values, name="xxx")
tm.assert_series_equal(idx.value_counts(), exp)
# normalize
exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion")
tm.assert_series_equal(ser.value_counts(normalize=True), exp)
tm.assert_series_equal(idx.value_counts(normalize=True), exp)
def test_value_counts_categorical_ordered(self):
# most dtypes are tested in tests/base
values = Categorical([1, 2, 3, 1, 1, 3], ordered=True)
exp_idx = CategoricalIndex(
[1, 3, 2], categories=[1, 2, 3], ordered=True, name="xxx"
)
exp = Series([3, 2, 1], index=exp_idx, name="count")
ser = Series(values, name="xxx")
tm.assert_series_equal(ser.value_counts(), exp)
# check CategoricalIndex outputs the same result
idx = CategoricalIndex(values, name="xxx")
tm.assert_series_equal(idx.value_counts(), exp)
# normalize
exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion")
tm.assert_series_equal(ser.value_counts(normalize=True), exp)
tm.assert_series_equal(idx.value_counts(normalize=True), exp)
def test_value_counts_categorical_not_ordered(self):
values = Categorical([1, 2, 3, 1, 1, 3], ordered=False)
exp_idx = CategoricalIndex(
[1, 3, 2], categories=[1, 2, 3], ordered=False, name="xxx"
)
exp = Series([3, 2, 1], index=exp_idx, name="count")
ser = Series(values, name="xxx")
tm.assert_series_equal(ser.value_counts(), exp)
# check CategoricalIndex outputs the same result
idx = CategoricalIndex(values, name="xxx")
tm.assert_series_equal(idx.value_counts(), exp)
# normalize
exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion")
tm.assert_series_equal(ser.value_counts(normalize=True), exp)
tm.assert_series_equal(idx.value_counts(normalize=True), exp)
def test_value_counts_categorical(self):
# GH#12835
cats = Categorical(list("abcccb"), categories=list("cabd"))
ser = Series(cats, name="xxx")
res = ser.value_counts(sort=False)
exp_index = CategoricalIndex(
list("cabd"), categories=cats.categories, name="xxx"
)
exp = Series([3, 1, 2, 0], name="count", index=exp_index)
tm.assert_series_equal(res, exp)
res = ser.value_counts(sort=True)
exp_index = CategoricalIndex(
list("cbad"), categories=cats.categories, name="xxx"
)
exp = Series([3, 2, 1, 0], name="count", index=exp_index)
tm.assert_series_equal(res, exp)
# check object dtype handles the Series.name as the same
# (tested in tests/base)
ser = Series(["a", "b", "c", "c", "c", "b"], name="xxx")
res = ser.value_counts()
exp = Series([3, 2, 1], name="count", index=Index(["c", "b", "a"], name="xxx"))
tm.assert_series_equal(res, exp)
def test_value_counts_categorical_with_nan(self):
# see GH#9443
# sanity check
ser = Series(["a", "b", "a"], dtype="category")
exp = Series([2, 1], index=CategoricalIndex(["a", "b"]), name="count")
res = ser.value_counts(dropna=True)
tm.assert_series_equal(res, exp)
res = ser.value_counts(dropna=True)
tm.assert_series_equal(res, exp)
# same Series via two different constructions --> same behaviour
series = [
Series(["a", "b", None, "a", None, None], dtype="category"),
Series(
Categorical(["a", "b", None, "a", None, None], categories=["a", "b"])
),
]
for ser in series:
# None is a NaN value, so we exclude its count here
exp = Series([2, 1], index=CategoricalIndex(["a", "b"]), name="count")
res = ser.value_counts(dropna=True)
tm.assert_series_equal(res, exp)
# we don't exclude the count of None and sort by counts
exp = Series(
[3, 2, 1], index=CategoricalIndex([np.nan, "a", "b"]), name="count"
)
res = ser.value_counts(dropna=False)
tm.assert_series_equal(res, exp)
# When we aren't sorting by counts, and np.nan isn't a
# category, it should be last.
exp = Series(
[2, 1, 3], index=CategoricalIndex(["a", "b", np.nan]), name="count"
)
res = ser.value_counts(dropna=False, sort=False)
tm.assert_series_equal(res, exp)
@pytest.mark.parametrize(
"ser, dropna, exp",
[
(
Series([False, True, True, pd.NA]),
False,
Series([2, 1, 1], index=[True, False, pd.NA], name="count"),
),
(
Series([False, True, True, pd.NA]),
True,
Series([2, 1], index=Index([True, False], dtype=object), name="count"),
),
(
Series(range(3), index=[True, False, np.nan]).index,
False,
Series([1, 1, 1], index=[True, False, np.nan], name="count"),
),
],
)
def test_value_counts_bool_with_nan(self, ser, dropna, exp):
# GH32146
out = ser.value_counts(dropna=dropna)
tm.assert_series_equal(out, exp)
@pytest.mark.parametrize(
"input_array,expected",
[
(
[1 + 1j, 1 + 1j, 1, 3j, 3j, 3j],
Series(
[3, 2, 1],
index=Index([3j, 1 + 1j, 1], dtype=np.complex128),
name="count",
),
),
(
np.array([1 + 1j, 1 + 1j, 1, 3j, 3j, 3j], dtype=np.complex64),
Series(
[3, 2, 1],
index=Index([3j, 1 + 1j, 1], dtype=np.complex64),
name="count",
),
),
],
)
def test_value_counts_complex_numbers(self, input_array, expected):
# GH 17927
result = Series(input_array).value_counts()
tm.assert_series_equal(result, expected)