253 lines
9.2 KiB
Python
253 lines
9.2 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
Categorical,
|
|
CategoricalIndex,
|
|
Index,
|
|
Series,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestSeriesValueCounts:
|
|
def test_value_counts_datetime(self):
|
|
# most dtypes are tested in tests/base
|
|
values = [
|
|
pd.Timestamp("2011-01-01 09:00"),
|
|
pd.Timestamp("2011-01-01 10:00"),
|
|
pd.Timestamp("2011-01-01 11:00"),
|
|
pd.Timestamp("2011-01-01 09:00"),
|
|
pd.Timestamp("2011-01-01 09:00"),
|
|
pd.Timestamp("2011-01-01 11:00"),
|
|
]
|
|
|
|
exp_idx = pd.DatetimeIndex(
|
|
["2011-01-01 09:00", "2011-01-01 11:00", "2011-01-01 10:00"],
|
|
name="xxx",
|
|
)
|
|
exp = Series([3, 2, 1], index=exp_idx, name="count")
|
|
|
|
ser = Series(values, name="xxx")
|
|
tm.assert_series_equal(ser.value_counts(), exp)
|
|
# check DatetimeIndex outputs the same result
|
|
idx = pd.DatetimeIndex(values, name="xxx")
|
|
tm.assert_series_equal(idx.value_counts(), exp)
|
|
|
|
# normalize
|
|
exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion")
|
|
tm.assert_series_equal(ser.value_counts(normalize=True), exp)
|
|
tm.assert_series_equal(idx.value_counts(normalize=True), exp)
|
|
|
|
def test_value_counts_datetime_tz(self):
|
|
values = [
|
|
pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"),
|
|
pd.Timestamp("2011-01-01 10:00", tz="US/Eastern"),
|
|
pd.Timestamp("2011-01-01 11:00", tz="US/Eastern"),
|
|
pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"),
|
|
pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"),
|
|
pd.Timestamp("2011-01-01 11:00", tz="US/Eastern"),
|
|
]
|
|
|
|
exp_idx = pd.DatetimeIndex(
|
|
["2011-01-01 09:00", "2011-01-01 11:00", "2011-01-01 10:00"],
|
|
tz="US/Eastern",
|
|
name="xxx",
|
|
)
|
|
exp = Series([3, 2, 1], index=exp_idx, name="count")
|
|
|
|
ser = Series(values, name="xxx")
|
|
tm.assert_series_equal(ser.value_counts(), exp)
|
|
idx = pd.DatetimeIndex(values, name="xxx")
|
|
tm.assert_series_equal(idx.value_counts(), exp)
|
|
|
|
exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion")
|
|
tm.assert_series_equal(ser.value_counts(normalize=True), exp)
|
|
tm.assert_series_equal(idx.value_counts(normalize=True), exp)
|
|
|
|
def test_value_counts_period(self):
|
|
values = [
|
|
pd.Period("2011-01", freq="M"),
|
|
pd.Period("2011-02", freq="M"),
|
|
pd.Period("2011-03", freq="M"),
|
|
pd.Period("2011-01", freq="M"),
|
|
pd.Period("2011-01", freq="M"),
|
|
pd.Period("2011-03", freq="M"),
|
|
]
|
|
|
|
exp_idx = pd.PeriodIndex(
|
|
["2011-01", "2011-03", "2011-02"], freq="M", name="xxx"
|
|
)
|
|
exp = Series([3, 2, 1], index=exp_idx, name="count")
|
|
|
|
ser = Series(values, name="xxx")
|
|
tm.assert_series_equal(ser.value_counts(), exp)
|
|
# check DatetimeIndex outputs the same result
|
|
idx = pd.PeriodIndex(values, name="xxx")
|
|
tm.assert_series_equal(idx.value_counts(), exp)
|
|
|
|
# normalize
|
|
exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion")
|
|
tm.assert_series_equal(ser.value_counts(normalize=True), exp)
|
|
tm.assert_series_equal(idx.value_counts(normalize=True), exp)
|
|
|
|
def test_value_counts_categorical_ordered(self):
|
|
# most dtypes are tested in tests/base
|
|
values = Categorical([1, 2, 3, 1, 1, 3], ordered=True)
|
|
|
|
exp_idx = CategoricalIndex(
|
|
[1, 3, 2], categories=[1, 2, 3], ordered=True, name="xxx"
|
|
)
|
|
exp = Series([3, 2, 1], index=exp_idx, name="count")
|
|
|
|
ser = Series(values, name="xxx")
|
|
tm.assert_series_equal(ser.value_counts(), exp)
|
|
# check CategoricalIndex outputs the same result
|
|
idx = CategoricalIndex(values, name="xxx")
|
|
tm.assert_series_equal(idx.value_counts(), exp)
|
|
|
|
# normalize
|
|
exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion")
|
|
tm.assert_series_equal(ser.value_counts(normalize=True), exp)
|
|
tm.assert_series_equal(idx.value_counts(normalize=True), exp)
|
|
|
|
def test_value_counts_categorical_not_ordered(self):
|
|
values = Categorical([1, 2, 3, 1, 1, 3], ordered=False)
|
|
|
|
exp_idx = CategoricalIndex(
|
|
[1, 3, 2], categories=[1, 2, 3], ordered=False, name="xxx"
|
|
)
|
|
exp = Series([3, 2, 1], index=exp_idx, name="count")
|
|
|
|
ser = Series(values, name="xxx")
|
|
tm.assert_series_equal(ser.value_counts(), exp)
|
|
# check CategoricalIndex outputs the same result
|
|
idx = CategoricalIndex(values, name="xxx")
|
|
tm.assert_series_equal(idx.value_counts(), exp)
|
|
|
|
# normalize
|
|
exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion")
|
|
tm.assert_series_equal(ser.value_counts(normalize=True), exp)
|
|
tm.assert_series_equal(idx.value_counts(normalize=True), exp)
|
|
|
|
def test_value_counts_categorical(self):
|
|
# GH#12835
|
|
cats = Categorical(list("abcccb"), categories=list("cabd"))
|
|
ser = Series(cats, name="xxx")
|
|
res = ser.value_counts(sort=False)
|
|
|
|
exp_index = CategoricalIndex(
|
|
list("cabd"), categories=cats.categories, name="xxx"
|
|
)
|
|
exp = Series([3, 1, 2, 0], name="count", index=exp_index)
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
res = ser.value_counts(sort=True)
|
|
|
|
exp_index = CategoricalIndex(
|
|
list("cbad"), categories=cats.categories, name="xxx"
|
|
)
|
|
exp = Series([3, 2, 1, 0], name="count", index=exp_index)
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
# check object dtype handles the Series.name as the same
|
|
# (tested in tests/base)
|
|
ser = Series(["a", "b", "c", "c", "c", "b"], name="xxx")
|
|
res = ser.value_counts()
|
|
exp = Series([3, 2, 1], name="count", index=Index(["c", "b", "a"], name="xxx"))
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
def test_value_counts_categorical_with_nan(self):
|
|
# see GH#9443
|
|
|
|
# sanity check
|
|
ser = Series(["a", "b", "a"], dtype="category")
|
|
exp = Series([2, 1], index=CategoricalIndex(["a", "b"]), name="count")
|
|
|
|
res = ser.value_counts(dropna=True)
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
res = ser.value_counts(dropna=True)
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
# same Series via two different constructions --> same behaviour
|
|
series = [
|
|
Series(["a", "b", None, "a", None, None], dtype="category"),
|
|
Series(
|
|
Categorical(["a", "b", None, "a", None, None], categories=["a", "b"])
|
|
),
|
|
]
|
|
|
|
for ser in series:
|
|
# None is a NaN value, so we exclude its count here
|
|
exp = Series([2, 1], index=CategoricalIndex(["a", "b"]), name="count")
|
|
res = ser.value_counts(dropna=True)
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
# we don't exclude the count of None and sort by counts
|
|
exp = Series(
|
|
[3, 2, 1], index=CategoricalIndex([np.nan, "a", "b"]), name="count"
|
|
)
|
|
res = ser.value_counts(dropna=False)
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
# When we aren't sorting by counts, and np.nan isn't a
|
|
# category, it should be last.
|
|
exp = Series(
|
|
[2, 1, 3], index=CategoricalIndex(["a", "b", np.nan]), name="count"
|
|
)
|
|
res = ser.value_counts(dropna=False, sort=False)
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
@pytest.mark.parametrize(
|
|
"ser, dropna, exp",
|
|
[
|
|
(
|
|
Series([False, True, True, pd.NA]),
|
|
False,
|
|
Series([2, 1, 1], index=[True, False, pd.NA], name="count"),
|
|
),
|
|
(
|
|
Series([False, True, True, pd.NA]),
|
|
True,
|
|
Series([2, 1], index=Index([True, False], dtype=object), name="count"),
|
|
),
|
|
(
|
|
Series(range(3), index=[True, False, np.nan]).index,
|
|
False,
|
|
Series([1, 1, 1], index=[True, False, np.nan], name="count"),
|
|
),
|
|
],
|
|
)
|
|
def test_value_counts_bool_with_nan(self, ser, dropna, exp):
|
|
# GH32146
|
|
out = ser.value_counts(dropna=dropna)
|
|
tm.assert_series_equal(out, exp)
|
|
|
|
@pytest.mark.parametrize(
|
|
"input_array,expected",
|
|
[
|
|
(
|
|
[1 + 1j, 1 + 1j, 1, 3j, 3j, 3j],
|
|
Series(
|
|
[3, 2, 1],
|
|
index=Index([3j, 1 + 1j, 1], dtype=np.complex128),
|
|
name="count",
|
|
),
|
|
),
|
|
(
|
|
np.array([1 + 1j, 1 + 1j, 1, 3j, 3j, 3j], dtype=np.complex64),
|
|
Series(
|
|
[3, 2, 1],
|
|
index=Index([3j, 1 + 1j, 1], dtype=np.complex64),
|
|
name="count",
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_value_counts_complex_numbers(self, input_array, expected):
|
|
# GH 17927
|
|
result = Series(input_array).value_counts()
|
|
tm.assert_series_equal(result, expected)
|