Inzynierka/Lib/site-packages/sklearn/cluster/tests/test_optics.py

818 lines
22 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
# Authors: Shane Grigsby <refuge@rocktalus.com>
# Adrin Jalali <adrin.jalali@gmail.com>
# License: BSD 3 clause
import numpy as np
import pytest
from scipy import sparse
import warnings
from sklearn.datasets import make_blobs
from sklearn.cluster import OPTICS
from sklearn.cluster._optics import _extend_region, _extract_xi_labels
from sklearn.exceptions import DataConversionWarning
from sklearn.metrics.cluster import contingency_matrix
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.cluster import DBSCAN
from sklearn.utils import shuffle
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_allclose
from sklearn.exceptions import EfficiencyWarning
from sklearn.cluster.tests.common import generate_clustered_data
rng = np.random.RandomState(0)
n_points_per_cluster = 10
C1 = [-5, -2] + 0.8 * rng.randn(n_points_per_cluster, 2)
C2 = [4, -1] + 0.1 * rng.randn(n_points_per_cluster, 2)
C3 = [1, -2] + 0.2 * rng.randn(n_points_per_cluster, 2)
C4 = [-2, 3] + 0.3 * rng.randn(n_points_per_cluster, 2)
C5 = [3, -2] + 1.6 * rng.randn(n_points_per_cluster, 2)
C6 = [5, 6] + 2 * rng.randn(n_points_per_cluster, 2)
X = np.vstack((C1, C2, C3, C4, C5, C6))
@pytest.mark.parametrize(
("r_plot", "end"),
[
[[10, 8.9, 8.8, 8.7, 7, 10], 3],
[[10, 8.9, 8.8, 8.7, 8.6, 7, 10], 0],
[[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
[[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
],
)
def test_extend_downward(r_plot, end):
r_plot = np.array(r_plot)
ratio = r_plot[:-1] / r_plot[1:]
steep_downward = ratio >= 1 / 0.9
upward = ratio < 1
e = _extend_region(steep_downward, upward, 0, 2)
assert e == end
@pytest.mark.parametrize(
("r_plot", "end"),
[
[[1, 2, 2.1, 2.2, 4, 8, 8, np.inf], 6],
[[1, 2, 2.1, 2.2, 2.3, 4, 8, 8, np.inf], 0],
[[1, 2, 2.1, 2, np.inf], 0],
[[1, 2, 2.1, np.inf], 2],
],
)
def test_extend_upward(r_plot, end):
r_plot = np.array(r_plot)
ratio = r_plot[:-1] / r_plot[1:]
steep_upward = ratio <= 0.9
downward = ratio > 1
e = _extend_region(steep_upward, downward, 0, 2)
assert e == end
@pytest.mark.parametrize(
("ordering", "clusters", "expected"),
[
[[0, 1, 2, 3], [[0, 1], [2, 3]], [0, 0, 1, 1]],
[[0, 1, 2, 3], [[0, 1], [3, 3]], [0, 0, -1, 1]],
[[0, 1, 2, 3], [[0, 1], [3, 3], [0, 3]], [0, 0, -1, 1]],
[[3, 1, 2, 0], [[0, 1], [3, 3], [0, 3]], [1, 0, -1, 0]],
],
)
def test_the_extract_xi_labels(ordering, clusters, expected):
labels = _extract_xi_labels(ordering, clusters)
assert_array_equal(labels, expected)
def test_extract_xi(global_dtype):
# small and easy test (no clusters around other clusters)
# but with a clear noise data.
rng = np.random.RandomState(0)
n_points_per_cluster = 5
C1 = [-5, -2] + 0.8 * rng.randn(n_points_per_cluster, 2)
C2 = [4, -1] + 0.1 * rng.randn(n_points_per_cluster, 2)
C3 = [1, -2] + 0.2 * rng.randn(n_points_per_cluster, 2)
C4 = [-2, 3] + 0.3 * rng.randn(n_points_per_cluster, 2)
C5 = [3, -2] + 0.6 * rng.randn(n_points_per_cluster, 2)
C6 = [5, 6] + 0.2 * rng.randn(n_points_per_cluster, 2)
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]]), C6)).astype(
global_dtype, copy=False
)
expected_labels = np.r_[[2] * 5, [0] * 5, [1] * 5, [3] * 5, [1] * 5, -1, [4] * 5]
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
clust = OPTICS(
min_samples=3, min_cluster_size=2, max_eps=20, cluster_method="xi", xi=0.4
).fit(X)
assert_array_equal(clust.labels_, expected_labels)
# check float min_samples and min_cluster_size
clust = OPTICS(
min_samples=0.1, min_cluster_size=0.08, max_eps=20, cluster_method="xi", xi=0.4
).fit(X)
assert_array_equal(clust.labels_, expected_labels)
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]] * 2), C6)).astype(
global_dtype, copy=False
)
expected_labels = np.r_[
[1] * 5, [3] * 5, [2] * 5, [0] * 5, [2] * 5, -1, -1, [4] * 5
]
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
clust = OPTICS(
min_samples=3, min_cluster_size=3, max_eps=20, cluster_method="xi", xi=0.3
).fit(X)
# this may fail if the predecessor correction is not at work!
assert_array_equal(clust.labels_, expected_labels)
C1 = [[0, 0], [0, 0.1], [0, -0.1], [0.1, 0]]
C2 = [[10, 10], [10, 9], [10, 11], [9, 10]]
C3 = [[100, 100], [100, 90], [100, 110], [90, 100]]
X = np.vstack((C1, C2, C3)).astype(global_dtype, copy=False)
expected_labels = np.r_[[0] * 4, [1] * 4, [2] * 4]
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
clust = OPTICS(
min_samples=2, min_cluster_size=2, max_eps=np.inf, cluster_method="xi", xi=0.04
).fit(X)
assert_array_equal(clust.labels_, expected_labels)
def test_cluster_hierarchy_(global_dtype):
rng = np.random.RandomState(0)
n_points_per_cluster = 100
C1 = [0, 0] + 2 * rng.randn(n_points_per_cluster, 2).astype(
global_dtype, copy=False
)
C2 = [0, 0] + 50 * rng.randn(n_points_per_cluster, 2).astype(
global_dtype, copy=False
)
X = np.vstack((C1, C2))
X = shuffle(X, random_state=0)
clusters = OPTICS(min_samples=20, xi=0.1).fit(X).cluster_hierarchy_
assert clusters.shape == (2, 2)
diff = np.sum(clusters - np.array([[0, 99], [0, 199]]))
assert diff / len(X) < 0.05
@pytest.mark.parametrize(
"metric, is_sparse",
[["minkowski", False], ["euclidean", True]],
)
def test_correct_number_of_clusters(metric, is_sparse):
# in 'auto' mode
n_clusters = 3
X = generate_clustered_data(n_clusters=n_clusters)
# Parameters chosen specifically for this task.
# Compute OPTICS
clust = OPTICS(max_eps=5.0 * 6.0, min_samples=4, xi=0.1, metric=metric)
clust.fit(sparse.csr_matrix(X) if is_sparse else X)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(clust.labels_)) - int(-1 in clust.labels_)
assert n_clusters_1 == n_clusters
# check attribute types and sizes
assert clust.labels_.shape == (len(X),)
assert clust.labels_.dtype.kind == "i"
assert clust.reachability_.shape == (len(X),)
assert clust.reachability_.dtype.kind == "f"
assert clust.core_distances_.shape == (len(X),)
assert clust.core_distances_.dtype.kind == "f"
assert clust.ordering_.shape == (len(X),)
assert clust.ordering_.dtype.kind == "i"
assert set(clust.ordering_) == set(range(len(X)))
def test_minimum_number_of_sample_check():
# test that we check a minimum number of samples
msg = "min_samples must be no greater than"
# Compute OPTICS
X = [[1, 1]]
clust = OPTICS(max_eps=5.0 * 0.3, min_samples=10, min_cluster_size=1)
# Run the fit
with pytest.raises(ValueError, match=msg):
clust.fit(X)
def test_bad_extract():
# Test an extraction of eps too close to original eps
msg = "Specify an epsilon smaller than 0.15. Got 0.3."
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(
n_samples=750, centers=centers, cluster_std=0.4, random_state=0
)
# Compute OPTICS
clust = OPTICS(max_eps=5.0 * 0.03, cluster_method="dbscan", eps=0.3, min_samples=10)
with pytest.raises(ValueError, match=msg):
clust.fit(X)
def test_bad_reachability():
msg = "All reachability values are inf. Set a larger max_eps."
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(
n_samples=750, centers=centers, cluster_std=0.4, random_state=0
)
with pytest.warns(UserWarning, match=msg):
clust = OPTICS(max_eps=5.0 * 0.003, min_samples=10, eps=0.015)
clust.fit(X)
def test_nowarn_if_metric_bool_data_bool():
# make sure no warning is raised if metric and data are both boolean
# non-regression test for
# https://github.com/scikit-learn/scikit-learn/issues/18996
pairwise_metric = "rogerstanimoto"
X = np.random.randint(2, size=(5, 2), dtype=bool)
with warnings.catch_warnings():
warnings.simplefilter("error", DataConversionWarning)
OPTICS(metric=pairwise_metric).fit(X)
def test_warn_if_metric_bool_data_no_bool():
# make sure a *single* conversion warning is raised if metric is boolean
# but data isn't
# non-regression test for
# https://github.com/scikit-learn/scikit-learn/issues/18996
pairwise_metric = "rogerstanimoto"
X = np.random.randint(2, size=(5, 2), dtype=np.int32)
msg = f"Data will be converted to boolean for metric {pairwise_metric}"
with pytest.warns(DataConversionWarning, match=msg) as warn_record:
OPTICS(metric=pairwise_metric).fit(X)
assert len(warn_record) == 1
def test_nowarn_if_metric_no_bool():
# make sure no conversion warning is raised if
# metric isn't boolean, no matter what the data type is
pairwise_metric = "minkowski"
X_bool = np.random.randint(2, size=(5, 2), dtype=bool)
X_num = np.random.randint(2, size=(5, 2), dtype=np.int32)
with warnings.catch_warnings():
warnings.simplefilter("error", DataConversionWarning)
# fit boolean data
OPTICS(metric=pairwise_metric).fit(X_bool)
# fit numeric data
OPTICS(metric=pairwise_metric).fit(X_num)
def test_close_extract():
# Test extract where extraction eps is close to scaled max_eps
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(
n_samples=750, centers=centers, cluster_std=0.4, random_state=0
)
# Compute OPTICS
clust = OPTICS(max_eps=1.0, cluster_method="dbscan", eps=0.3, min_samples=10).fit(X)
# Cluster ordering starts at 0; max cluster label = 2 is 3 clusters
assert max(clust.labels_) == 2
@pytest.mark.parametrize("eps", [0.1, 0.3, 0.5])
@pytest.mark.parametrize("min_samples", [3, 10, 20])
@pytest.mark.parametrize(
"metric, is_sparse",
[["minkowski", False], ["euclidean", False], ["euclidean", True]],
)
def test_dbscan_optics_parity(eps, min_samples, metric, is_sparse, global_dtype):
# Test that OPTICS clustering labels are <= 5% difference of DBSCAN
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(
n_samples=750, centers=centers, cluster_std=0.4, random_state=0
)
X = sparse.csr_matrix(X) if is_sparse else X
X = X.astype(global_dtype, copy=False)
# calculate optics with dbscan extract at 0.3 epsilon
op = OPTICS(
min_samples=min_samples, cluster_method="dbscan", eps=eps, metric=metric
).fit(X)
# calculate dbscan labels
db = DBSCAN(eps=eps, min_samples=min_samples).fit(X)
contingency = contingency_matrix(db.labels_, op.labels_)
agree = min(
np.sum(np.max(contingency, axis=0)), np.sum(np.max(contingency, axis=1))
)
disagree = X.shape[0] - agree
percent_mismatch = np.round((disagree - 1) / X.shape[0], 2)
# verify label mismatch is <= 5% labels
assert percent_mismatch <= 0.05
def test_min_samples_edge_case(global_dtype):
C1 = [[0, 0], [0, 0.1], [0, -0.1]]
C2 = [[10, 10], [10, 9], [10, 11]]
C3 = [[100, 100], [100, 96], [100, 106]]
X = np.vstack((C1, C2, C3)).astype(global_dtype, copy=False)
expected_labels = np.r_[[0] * 3, [1] * 3, [2] * 3]
clust = OPTICS(min_samples=3, max_eps=7, cluster_method="xi", xi=0.04).fit(X)
assert_array_equal(clust.labels_, expected_labels)
expected_labels = np.r_[[0] * 3, [1] * 3, [-1] * 3]
clust = OPTICS(min_samples=3, max_eps=3, cluster_method="xi", xi=0.04).fit(X)
assert_array_equal(clust.labels_, expected_labels)
expected_labels = np.r_[[-1] * 9]
with pytest.warns(UserWarning, match="All reachability values"):
clust = OPTICS(min_samples=4, max_eps=3, cluster_method="xi", xi=0.04).fit(X)
assert_array_equal(clust.labels_, expected_labels)
# try arbitrary minimum sizes
@pytest.mark.parametrize("min_cluster_size", range(2, X.shape[0] // 10, 23))
def test_min_cluster_size(min_cluster_size, global_dtype):
redX = X[::2].astype(global_dtype, copy=False) # reduce for speed
clust = OPTICS(min_samples=9, min_cluster_size=min_cluster_size).fit(redX)
cluster_sizes = np.bincount(clust.labels_[clust.labels_ != -1])
if cluster_sizes.size:
assert min(cluster_sizes) >= min_cluster_size
# check behaviour is the same when min_cluster_size is a fraction
clust_frac = OPTICS(
min_samples=9,
min_cluster_size=min_cluster_size / redX.shape[0],
)
clust_frac.fit(redX)
assert_array_equal(clust.labels_, clust_frac.labels_)
def test_min_cluster_size_invalid2():
clust = OPTICS(min_cluster_size=len(X) + 1)
with pytest.raises(ValueError, match="must be no greater than the "):
clust.fit(X)
clust = OPTICS(min_cluster_size=len(X) + 1, metric="euclidean")
with pytest.raises(ValueError, match="must be no greater than the "):
clust.fit(sparse.csr_matrix(X))
def test_processing_order():
# Ensure that we consider all unprocessed points,
# not only direct neighbors. when picking the next point.
Y = [[0], [10], [-10], [25]]
clust = OPTICS(min_samples=3, max_eps=15).fit(Y)
assert_array_equal(clust.reachability_, [np.inf, 10, 10, 15])
assert_array_equal(clust.core_distances_, [10, 15, np.inf, np.inf])
assert_array_equal(clust.ordering_, [0, 1, 2, 3])
def test_compare_to_ELKI():
# Expected values, computed with (future) ELKI 0.7.5 using:
# java -jar elki.jar cli -dbc.in csv -dbc.filter FixedDBIDsFilter
# -algorithm clustering.optics.OPTICSHeap -optics.minpts 5
# where the FixedDBIDsFilter gives 0-indexed ids.
r1 = [
np.inf,
1.0574896366427478,
0.7587934993548423,
0.7290174038973836,
0.7290174038973836,
0.7290174038973836,
0.6861627576116127,
0.7587934993548423,
0.9280118450166668,
1.1748022534146194,
3.3355455741292257,
0.49618389254482587,
0.2552805046961355,
0.2552805046961355,
0.24944622248445714,
0.24944622248445714,
0.24944622248445714,
0.2552805046961355,
0.2552805046961355,
0.3086779122185853,
4.163024452756142,
1.623152630340929,
0.45315840475822655,
0.25468325192031926,
0.2254004358159971,
0.18765711877083036,
0.1821471333893275,
0.1821471333893275,
0.18765711877083036,
0.18765711877083036,
0.2240202988740153,
1.154337614548715,
1.342604473837069,
1.323308536402633,
0.8607514948648837,
0.27219111215810565,
0.13260875220533205,
0.13260875220533205,
0.09890587675958984,
0.09890587675958984,
0.13548790801634494,
0.1575483940837384,
0.17515137170530226,
0.17575920159442388,
0.27219111215810565,
0.6101447895405373,
1.3189208094864302,
1.323308536402633,
2.2509184159764577,
2.4517810628594527,
3.675977064404973,
3.8264795626020365,
2.9130735341510614,
2.9130735341510614,
2.9130735341510614,
2.9130735341510614,
2.8459300127258036,
2.8459300127258036,
2.8459300127258036,
3.0321982337972537,
]
o1 = [
0,
3,
6,
4,
7,
8,
2,
9,
5,
1,
31,
30,
32,
34,
33,
38,
39,
35,
37,
36,
44,
21,
23,
24,
22,
25,
27,
29,
26,
28,
20,
40,
45,
46,
10,
15,
11,
13,
17,
19,
18,
12,
16,
14,
47,
49,
43,
48,
42,
41,
53,
57,
51,
52,
56,
59,
54,
55,
58,
50,
]
p1 = [
-1,
0,
3,
6,
6,
6,
8,
3,
7,
5,
1,
31,
30,
30,
34,
34,
34,
32,
32,
37,
36,
44,
21,
23,
24,
22,
25,
25,
22,
22,
22,
21,
40,
45,
46,
10,
15,
15,
13,
13,
15,
11,
19,
15,
10,
47,
12,
45,
14,
43,
42,
53,
57,
57,
57,
57,
59,
59,
59,
58,
]
# Tests against known extraction array
# Does NOT work with metric='euclidean', because sklearn euclidean has
# worse numeric precision. 'minkowski' is slower but more accurate.
clust1 = OPTICS(min_samples=5).fit(X)
assert_array_equal(clust1.ordering_, np.array(o1))
assert_array_equal(clust1.predecessor_[clust1.ordering_], np.array(p1))
assert_allclose(clust1.reachability_[clust1.ordering_], np.array(r1))
# ELKI currently does not print the core distances (which are not used much
# in literature, but we can at least ensure to have this consistency:
for i in clust1.ordering_[1:]:
assert clust1.reachability_[i] >= clust1.core_distances_[clust1.predecessor_[i]]
# Expected values, computed with (future) ELKI 0.7.5 using
r2 = [
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
0.27219111215810565,
0.13260875220533205,
0.13260875220533205,
0.09890587675958984,
0.09890587675958984,
0.13548790801634494,
0.1575483940837384,
0.17515137170530226,
0.17575920159442388,
0.27219111215810565,
0.4928068613197889,
np.inf,
0.2666183922512113,
0.18765711877083036,
0.1821471333893275,
0.1821471333893275,
0.1821471333893275,
0.18715928772277457,
0.18765711877083036,
0.18765711877083036,
0.25468325192031926,
np.inf,
0.2552805046961355,
0.2552805046961355,
0.24944622248445714,
0.24944622248445714,
0.24944622248445714,
0.2552805046961355,
0.2552805046961355,
0.3086779122185853,
0.34466409325984865,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
np.inf,
]
o2 = [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
15,
11,
13,
17,
19,
18,
12,
16,
14,
47,
46,
20,
22,
25,
23,
27,
29,
24,
26,
28,
21,
30,
32,
34,
33,
38,
39,
35,
37,
36,
31,
40,
41,
42,
43,
44,
45,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
]
p2 = [
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
10,
15,
15,
13,
13,
15,
11,
19,
15,
10,
47,
-1,
20,
22,
25,
25,
25,
25,
22,
22,
23,
-1,
30,
30,
34,
34,
34,
32,
32,
37,
38,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
]
clust2 = OPTICS(min_samples=5, max_eps=0.5).fit(X)
assert_array_equal(clust2.ordering_, np.array(o2))
assert_array_equal(clust2.predecessor_[clust2.ordering_], np.array(p2))
assert_allclose(clust2.reachability_[clust2.ordering_], np.array(r2))
index = np.where(clust1.core_distances_ <= 0.5)[0]
assert_allclose(clust1.core_distances_[index], clust2.core_distances_[index])
def test_extract_dbscan(global_dtype):
# testing an easy dbscan case. Not including clusters with different
# densities.
rng = np.random.RandomState(0)
n_points_per_cluster = 20
C1 = [-5, -2] + 0.2 * rng.randn(n_points_per_cluster, 2)
C2 = [4, -1] + 0.2 * rng.randn(n_points_per_cluster, 2)
C3 = [1, 2] + 0.2 * rng.randn(n_points_per_cluster, 2)
C4 = [-2, 3] + 0.2 * rng.randn(n_points_per_cluster, 2)
X = np.vstack((C1, C2, C3, C4)).astype(global_dtype, copy=False)
clust = OPTICS(cluster_method="dbscan", eps=0.5).fit(X)
assert_array_equal(np.sort(np.unique(clust.labels_)), [0, 1, 2, 3])
@pytest.mark.parametrize("is_sparse", [False, True])
def test_precomputed_dists(is_sparse, global_dtype):
redX = X[::2].astype(global_dtype, copy=False)
dists = pairwise_distances(redX, metric="euclidean")
dists = sparse.csr_matrix(dists) if is_sparse else dists
with warnings.catch_warnings():
warnings.simplefilter("ignore", EfficiencyWarning)
clust1 = OPTICS(min_samples=10, algorithm="brute", metric="precomputed").fit(
dists
)
clust2 = OPTICS(min_samples=10, algorithm="brute", metric="euclidean").fit(redX)
assert_allclose(clust1.reachability_, clust2.reachability_)
assert_array_equal(clust1.labels_, clust2.labels_)