818 lines
22 KiB
Python
818 lines
22 KiB
Python
# Authors: Shane Grigsby <refuge@rocktalus.com>
|
|
# Adrin Jalali <adrin.jalali@gmail.com>
|
|
# License: BSD 3 clause
|
|
import numpy as np
|
|
import pytest
|
|
from scipy import sparse
|
|
import warnings
|
|
|
|
from sklearn.datasets import make_blobs
|
|
from sklearn.cluster import OPTICS
|
|
from sklearn.cluster._optics import _extend_region, _extract_xi_labels
|
|
from sklearn.exceptions import DataConversionWarning
|
|
from sklearn.metrics.cluster import contingency_matrix
|
|
from sklearn.metrics.pairwise import pairwise_distances
|
|
from sklearn.cluster import DBSCAN
|
|
from sklearn.utils import shuffle
|
|
from sklearn.utils._testing import assert_array_equal
|
|
from sklearn.utils._testing import assert_allclose
|
|
from sklearn.exceptions import EfficiencyWarning
|
|
from sklearn.cluster.tests.common import generate_clustered_data
|
|
|
|
|
|
rng = np.random.RandomState(0)
|
|
n_points_per_cluster = 10
|
|
C1 = [-5, -2] + 0.8 * rng.randn(n_points_per_cluster, 2)
|
|
C2 = [4, -1] + 0.1 * rng.randn(n_points_per_cluster, 2)
|
|
C3 = [1, -2] + 0.2 * rng.randn(n_points_per_cluster, 2)
|
|
C4 = [-2, 3] + 0.3 * rng.randn(n_points_per_cluster, 2)
|
|
C5 = [3, -2] + 1.6 * rng.randn(n_points_per_cluster, 2)
|
|
C6 = [5, 6] + 2 * rng.randn(n_points_per_cluster, 2)
|
|
X = np.vstack((C1, C2, C3, C4, C5, C6))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("r_plot", "end"),
|
|
[
|
|
[[10, 8.9, 8.8, 8.7, 7, 10], 3],
|
|
[[10, 8.9, 8.8, 8.7, 8.6, 7, 10], 0],
|
|
[[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
|
|
[[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
|
|
],
|
|
)
|
|
def test_extend_downward(r_plot, end):
|
|
r_plot = np.array(r_plot)
|
|
ratio = r_plot[:-1] / r_plot[1:]
|
|
steep_downward = ratio >= 1 / 0.9
|
|
upward = ratio < 1
|
|
|
|
e = _extend_region(steep_downward, upward, 0, 2)
|
|
assert e == end
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("r_plot", "end"),
|
|
[
|
|
[[1, 2, 2.1, 2.2, 4, 8, 8, np.inf], 6],
|
|
[[1, 2, 2.1, 2.2, 2.3, 4, 8, 8, np.inf], 0],
|
|
[[1, 2, 2.1, 2, np.inf], 0],
|
|
[[1, 2, 2.1, np.inf], 2],
|
|
],
|
|
)
|
|
def test_extend_upward(r_plot, end):
|
|
r_plot = np.array(r_plot)
|
|
ratio = r_plot[:-1] / r_plot[1:]
|
|
steep_upward = ratio <= 0.9
|
|
downward = ratio > 1
|
|
|
|
e = _extend_region(steep_upward, downward, 0, 2)
|
|
assert e == end
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("ordering", "clusters", "expected"),
|
|
[
|
|
[[0, 1, 2, 3], [[0, 1], [2, 3]], [0, 0, 1, 1]],
|
|
[[0, 1, 2, 3], [[0, 1], [3, 3]], [0, 0, -1, 1]],
|
|
[[0, 1, 2, 3], [[0, 1], [3, 3], [0, 3]], [0, 0, -1, 1]],
|
|
[[3, 1, 2, 0], [[0, 1], [3, 3], [0, 3]], [1, 0, -1, 0]],
|
|
],
|
|
)
|
|
def test_the_extract_xi_labels(ordering, clusters, expected):
|
|
labels = _extract_xi_labels(ordering, clusters)
|
|
|
|
assert_array_equal(labels, expected)
|
|
|
|
|
|
def test_extract_xi(global_dtype):
|
|
# small and easy test (no clusters around other clusters)
|
|
# but with a clear noise data.
|
|
rng = np.random.RandomState(0)
|
|
n_points_per_cluster = 5
|
|
|
|
C1 = [-5, -2] + 0.8 * rng.randn(n_points_per_cluster, 2)
|
|
C2 = [4, -1] + 0.1 * rng.randn(n_points_per_cluster, 2)
|
|
C3 = [1, -2] + 0.2 * rng.randn(n_points_per_cluster, 2)
|
|
C4 = [-2, 3] + 0.3 * rng.randn(n_points_per_cluster, 2)
|
|
C5 = [3, -2] + 0.6 * rng.randn(n_points_per_cluster, 2)
|
|
C6 = [5, 6] + 0.2 * rng.randn(n_points_per_cluster, 2)
|
|
|
|
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]]), C6)).astype(
|
|
global_dtype, copy=False
|
|
)
|
|
expected_labels = np.r_[[2] * 5, [0] * 5, [1] * 5, [3] * 5, [1] * 5, -1, [4] * 5]
|
|
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
|
|
|
|
clust = OPTICS(
|
|
min_samples=3, min_cluster_size=2, max_eps=20, cluster_method="xi", xi=0.4
|
|
).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
# check float min_samples and min_cluster_size
|
|
clust = OPTICS(
|
|
min_samples=0.1, min_cluster_size=0.08, max_eps=20, cluster_method="xi", xi=0.4
|
|
).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]] * 2), C6)).astype(
|
|
global_dtype, copy=False
|
|
)
|
|
expected_labels = np.r_[
|
|
[1] * 5, [3] * 5, [2] * 5, [0] * 5, [2] * 5, -1, -1, [4] * 5
|
|
]
|
|
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
|
|
|
|
clust = OPTICS(
|
|
min_samples=3, min_cluster_size=3, max_eps=20, cluster_method="xi", xi=0.3
|
|
).fit(X)
|
|
# this may fail if the predecessor correction is not at work!
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
C1 = [[0, 0], [0, 0.1], [0, -0.1], [0.1, 0]]
|
|
C2 = [[10, 10], [10, 9], [10, 11], [9, 10]]
|
|
C3 = [[100, 100], [100, 90], [100, 110], [90, 100]]
|
|
X = np.vstack((C1, C2, C3)).astype(global_dtype, copy=False)
|
|
expected_labels = np.r_[[0] * 4, [1] * 4, [2] * 4]
|
|
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
|
|
|
|
clust = OPTICS(
|
|
min_samples=2, min_cluster_size=2, max_eps=np.inf, cluster_method="xi", xi=0.04
|
|
).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
|
|
def test_cluster_hierarchy_(global_dtype):
|
|
rng = np.random.RandomState(0)
|
|
n_points_per_cluster = 100
|
|
C1 = [0, 0] + 2 * rng.randn(n_points_per_cluster, 2).astype(
|
|
global_dtype, copy=False
|
|
)
|
|
C2 = [0, 0] + 50 * rng.randn(n_points_per_cluster, 2).astype(
|
|
global_dtype, copy=False
|
|
)
|
|
X = np.vstack((C1, C2))
|
|
X = shuffle(X, random_state=0)
|
|
|
|
clusters = OPTICS(min_samples=20, xi=0.1).fit(X).cluster_hierarchy_
|
|
assert clusters.shape == (2, 2)
|
|
diff = np.sum(clusters - np.array([[0, 99], [0, 199]]))
|
|
assert diff / len(X) < 0.05
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"metric, is_sparse",
|
|
[["minkowski", False], ["euclidean", True]],
|
|
)
|
|
def test_correct_number_of_clusters(metric, is_sparse):
|
|
# in 'auto' mode
|
|
|
|
n_clusters = 3
|
|
X = generate_clustered_data(n_clusters=n_clusters)
|
|
# Parameters chosen specifically for this task.
|
|
# Compute OPTICS
|
|
clust = OPTICS(max_eps=5.0 * 6.0, min_samples=4, xi=0.1, metric=metric)
|
|
clust.fit(sparse.csr_matrix(X) if is_sparse else X)
|
|
# number of clusters, ignoring noise if present
|
|
n_clusters_1 = len(set(clust.labels_)) - int(-1 in clust.labels_)
|
|
assert n_clusters_1 == n_clusters
|
|
|
|
# check attribute types and sizes
|
|
assert clust.labels_.shape == (len(X),)
|
|
assert clust.labels_.dtype.kind == "i"
|
|
|
|
assert clust.reachability_.shape == (len(X),)
|
|
assert clust.reachability_.dtype.kind == "f"
|
|
|
|
assert clust.core_distances_.shape == (len(X),)
|
|
assert clust.core_distances_.dtype.kind == "f"
|
|
|
|
assert clust.ordering_.shape == (len(X),)
|
|
assert clust.ordering_.dtype.kind == "i"
|
|
assert set(clust.ordering_) == set(range(len(X)))
|
|
|
|
|
|
def test_minimum_number_of_sample_check():
|
|
# test that we check a minimum number of samples
|
|
msg = "min_samples must be no greater than"
|
|
|
|
# Compute OPTICS
|
|
X = [[1, 1]]
|
|
clust = OPTICS(max_eps=5.0 * 0.3, min_samples=10, min_cluster_size=1)
|
|
|
|
# Run the fit
|
|
with pytest.raises(ValueError, match=msg):
|
|
clust.fit(X)
|
|
|
|
|
|
def test_bad_extract():
|
|
# Test an extraction of eps too close to original eps
|
|
msg = "Specify an epsilon smaller than 0.15. Got 0.3."
|
|
centers = [[1, 1], [-1, -1], [1, -1]]
|
|
X, labels_true = make_blobs(
|
|
n_samples=750, centers=centers, cluster_std=0.4, random_state=0
|
|
)
|
|
|
|
# Compute OPTICS
|
|
clust = OPTICS(max_eps=5.0 * 0.03, cluster_method="dbscan", eps=0.3, min_samples=10)
|
|
with pytest.raises(ValueError, match=msg):
|
|
clust.fit(X)
|
|
|
|
|
|
def test_bad_reachability():
|
|
msg = "All reachability values are inf. Set a larger max_eps."
|
|
centers = [[1, 1], [-1, -1], [1, -1]]
|
|
X, labels_true = make_blobs(
|
|
n_samples=750, centers=centers, cluster_std=0.4, random_state=0
|
|
)
|
|
|
|
with pytest.warns(UserWarning, match=msg):
|
|
clust = OPTICS(max_eps=5.0 * 0.003, min_samples=10, eps=0.015)
|
|
clust.fit(X)
|
|
|
|
|
|
def test_nowarn_if_metric_bool_data_bool():
|
|
# make sure no warning is raised if metric and data are both boolean
|
|
# non-regression test for
|
|
# https://github.com/scikit-learn/scikit-learn/issues/18996
|
|
|
|
pairwise_metric = "rogerstanimoto"
|
|
X = np.random.randint(2, size=(5, 2), dtype=bool)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("error", DataConversionWarning)
|
|
|
|
OPTICS(metric=pairwise_metric).fit(X)
|
|
|
|
|
|
def test_warn_if_metric_bool_data_no_bool():
|
|
# make sure a *single* conversion warning is raised if metric is boolean
|
|
# but data isn't
|
|
# non-regression test for
|
|
# https://github.com/scikit-learn/scikit-learn/issues/18996
|
|
|
|
pairwise_metric = "rogerstanimoto"
|
|
X = np.random.randint(2, size=(5, 2), dtype=np.int32)
|
|
msg = f"Data will be converted to boolean for metric {pairwise_metric}"
|
|
|
|
with pytest.warns(DataConversionWarning, match=msg) as warn_record:
|
|
OPTICS(metric=pairwise_metric).fit(X)
|
|
assert len(warn_record) == 1
|
|
|
|
|
|
def test_nowarn_if_metric_no_bool():
|
|
# make sure no conversion warning is raised if
|
|
# metric isn't boolean, no matter what the data type is
|
|
pairwise_metric = "minkowski"
|
|
X_bool = np.random.randint(2, size=(5, 2), dtype=bool)
|
|
X_num = np.random.randint(2, size=(5, 2), dtype=np.int32)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("error", DataConversionWarning)
|
|
|
|
# fit boolean data
|
|
OPTICS(metric=pairwise_metric).fit(X_bool)
|
|
# fit numeric data
|
|
OPTICS(metric=pairwise_metric).fit(X_num)
|
|
|
|
|
|
def test_close_extract():
|
|
# Test extract where extraction eps is close to scaled max_eps
|
|
|
|
centers = [[1, 1], [-1, -1], [1, -1]]
|
|
X, labels_true = make_blobs(
|
|
n_samples=750, centers=centers, cluster_std=0.4, random_state=0
|
|
)
|
|
|
|
# Compute OPTICS
|
|
clust = OPTICS(max_eps=1.0, cluster_method="dbscan", eps=0.3, min_samples=10).fit(X)
|
|
# Cluster ordering starts at 0; max cluster label = 2 is 3 clusters
|
|
assert max(clust.labels_) == 2
|
|
|
|
|
|
@pytest.mark.parametrize("eps", [0.1, 0.3, 0.5])
|
|
@pytest.mark.parametrize("min_samples", [3, 10, 20])
|
|
@pytest.mark.parametrize(
|
|
"metric, is_sparse",
|
|
[["minkowski", False], ["euclidean", False], ["euclidean", True]],
|
|
)
|
|
def test_dbscan_optics_parity(eps, min_samples, metric, is_sparse, global_dtype):
|
|
# Test that OPTICS clustering labels are <= 5% difference of DBSCAN
|
|
|
|
centers = [[1, 1], [-1, -1], [1, -1]]
|
|
X, labels_true = make_blobs(
|
|
n_samples=750, centers=centers, cluster_std=0.4, random_state=0
|
|
)
|
|
X = sparse.csr_matrix(X) if is_sparse else X
|
|
|
|
X = X.astype(global_dtype, copy=False)
|
|
|
|
# calculate optics with dbscan extract at 0.3 epsilon
|
|
op = OPTICS(
|
|
min_samples=min_samples, cluster_method="dbscan", eps=eps, metric=metric
|
|
).fit(X)
|
|
|
|
# calculate dbscan labels
|
|
db = DBSCAN(eps=eps, min_samples=min_samples).fit(X)
|
|
|
|
contingency = contingency_matrix(db.labels_, op.labels_)
|
|
agree = min(
|
|
np.sum(np.max(contingency, axis=0)), np.sum(np.max(contingency, axis=1))
|
|
)
|
|
disagree = X.shape[0] - agree
|
|
|
|
percent_mismatch = np.round((disagree - 1) / X.shape[0], 2)
|
|
|
|
# verify label mismatch is <= 5% labels
|
|
assert percent_mismatch <= 0.05
|
|
|
|
|
|
def test_min_samples_edge_case(global_dtype):
|
|
C1 = [[0, 0], [0, 0.1], [0, -0.1]]
|
|
C2 = [[10, 10], [10, 9], [10, 11]]
|
|
C3 = [[100, 100], [100, 96], [100, 106]]
|
|
X = np.vstack((C1, C2, C3)).astype(global_dtype, copy=False)
|
|
|
|
expected_labels = np.r_[[0] * 3, [1] * 3, [2] * 3]
|
|
clust = OPTICS(min_samples=3, max_eps=7, cluster_method="xi", xi=0.04).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
expected_labels = np.r_[[0] * 3, [1] * 3, [-1] * 3]
|
|
clust = OPTICS(min_samples=3, max_eps=3, cluster_method="xi", xi=0.04).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
expected_labels = np.r_[[-1] * 9]
|
|
with pytest.warns(UserWarning, match="All reachability values"):
|
|
clust = OPTICS(min_samples=4, max_eps=3, cluster_method="xi", xi=0.04).fit(X)
|
|
assert_array_equal(clust.labels_, expected_labels)
|
|
|
|
|
|
# try arbitrary minimum sizes
|
|
@pytest.mark.parametrize("min_cluster_size", range(2, X.shape[0] // 10, 23))
|
|
def test_min_cluster_size(min_cluster_size, global_dtype):
|
|
redX = X[::2].astype(global_dtype, copy=False) # reduce for speed
|
|
clust = OPTICS(min_samples=9, min_cluster_size=min_cluster_size).fit(redX)
|
|
cluster_sizes = np.bincount(clust.labels_[clust.labels_ != -1])
|
|
if cluster_sizes.size:
|
|
assert min(cluster_sizes) >= min_cluster_size
|
|
# check behaviour is the same when min_cluster_size is a fraction
|
|
clust_frac = OPTICS(
|
|
min_samples=9,
|
|
min_cluster_size=min_cluster_size / redX.shape[0],
|
|
)
|
|
clust_frac.fit(redX)
|
|
assert_array_equal(clust.labels_, clust_frac.labels_)
|
|
|
|
|
|
def test_min_cluster_size_invalid2():
|
|
clust = OPTICS(min_cluster_size=len(X) + 1)
|
|
with pytest.raises(ValueError, match="must be no greater than the "):
|
|
clust.fit(X)
|
|
|
|
clust = OPTICS(min_cluster_size=len(X) + 1, metric="euclidean")
|
|
with pytest.raises(ValueError, match="must be no greater than the "):
|
|
clust.fit(sparse.csr_matrix(X))
|
|
|
|
|
|
def test_processing_order():
|
|
# Ensure that we consider all unprocessed points,
|
|
# not only direct neighbors. when picking the next point.
|
|
Y = [[0], [10], [-10], [25]]
|
|
|
|
clust = OPTICS(min_samples=3, max_eps=15).fit(Y)
|
|
assert_array_equal(clust.reachability_, [np.inf, 10, 10, 15])
|
|
assert_array_equal(clust.core_distances_, [10, 15, np.inf, np.inf])
|
|
assert_array_equal(clust.ordering_, [0, 1, 2, 3])
|
|
|
|
|
|
def test_compare_to_ELKI():
|
|
# Expected values, computed with (future) ELKI 0.7.5 using:
|
|
# java -jar elki.jar cli -dbc.in csv -dbc.filter FixedDBIDsFilter
|
|
# -algorithm clustering.optics.OPTICSHeap -optics.minpts 5
|
|
# where the FixedDBIDsFilter gives 0-indexed ids.
|
|
r1 = [
|
|
np.inf,
|
|
1.0574896366427478,
|
|
0.7587934993548423,
|
|
0.7290174038973836,
|
|
0.7290174038973836,
|
|
0.7290174038973836,
|
|
0.6861627576116127,
|
|
0.7587934993548423,
|
|
0.9280118450166668,
|
|
1.1748022534146194,
|
|
3.3355455741292257,
|
|
0.49618389254482587,
|
|
0.2552805046961355,
|
|
0.2552805046961355,
|
|
0.24944622248445714,
|
|
0.24944622248445714,
|
|
0.24944622248445714,
|
|
0.2552805046961355,
|
|
0.2552805046961355,
|
|
0.3086779122185853,
|
|
4.163024452756142,
|
|
1.623152630340929,
|
|
0.45315840475822655,
|
|
0.25468325192031926,
|
|
0.2254004358159971,
|
|
0.18765711877083036,
|
|
0.1821471333893275,
|
|
0.1821471333893275,
|
|
0.18765711877083036,
|
|
0.18765711877083036,
|
|
0.2240202988740153,
|
|
1.154337614548715,
|
|
1.342604473837069,
|
|
1.323308536402633,
|
|
0.8607514948648837,
|
|
0.27219111215810565,
|
|
0.13260875220533205,
|
|
0.13260875220533205,
|
|
0.09890587675958984,
|
|
0.09890587675958984,
|
|
0.13548790801634494,
|
|
0.1575483940837384,
|
|
0.17515137170530226,
|
|
0.17575920159442388,
|
|
0.27219111215810565,
|
|
0.6101447895405373,
|
|
1.3189208094864302,
|
|
1.323308536402633,
|
|
2.2509184159764577,
|
|
2.4517810628594527,
|
|
3.675977064404973,
|
|
3.8264795626020365,
|
|
2.9130735341510614,
|
|
2.9130735341510614,
|
|
2.9130735341510614,
|
|
2.9130735341510614,
|
|
2.8459300127258036,
|
|
2.8459300127258036,
|
|
2.8459300127258036,
|
|
3.0321982337972537,
|
|
]
|
|
o1 = [
|
|
0,
|
|
3,
|
|
6,
|
|
4,
|
|
7,
|
|
8,
|
|
2,
|
|
9,
|
|
5,
|
|
1,
|
|
31,
|
|
30,
|
|
32,
|
|
34,
|
|
33,
|
|
38,
|
|
39,
|
|
35,
|
|
37,
|
|
36,
|
|
44,
|
|
21,
|
|
23,
|
|
24,
|
|
22,
|
|
25,
|
|
27,
|
|
29,
|
|
26,
|
|
28,
|
|
20,
|
|
40,
|
|
45,
|
|
46,
|
|
10,
|
|
15,
|
|
11,
|
|
13,
|
|
17,
|
|
19,
|
|
18,
|
|
12,
|
|
16,
|
|
14,
|
|
47,
|
|
49,
|
|
43,
|
|
48,
|
|
42,
|
|
41,
|
|
53,
|
|
57,
|
|
51,
|
|
52,
|
|
56,
|
|
59,
|
|
54,
|
|
55,
|
|
58,
|
|
50,
|
|
]
|
|
p1 = [
|
|
-1,
|
|
0,
|
|
3,
|
|
6,
|
|
6,
|
|
6,
|
|
8,
|
|
3,
|
|
7,
|
|
5,
|
|
1,
|
|
31,
|
|
30,
|
|
30,
|
|
34,
|
|
34,
|
|
34,
|
|
32,
|
|
32,
|
|
37,
|
|
36,
|
|
44,
|
|
21,
|
|
23,
|
|
24,
|
|
22,
|
|
25,
|
|
25,
|
|
22,
|
|
22,
|
|
22,
|
|
21,
|
|
40,
|
|
45,
|
|
46,
|
|
10,
|
|
15,
|
|
15,
|
|
13,
|
|
13,
|
|
15,
|
|
11,
|
|
19,
|
|
15,
|
|
10,
|
|
47,
|
|
12,
|
|
45,
|
|
14,
|
|
43,
|
|
42,
|
|
53,
|
|
57,
|
|
57,
|
|
57,
|
|
57,
|
|
59,
|
|
59,
|
|
59,
|
|
58,
|
|
]
|
|
|
|
# Tests against known extraction array
|
|
# Does NOT work with metric='euclidean', because sklearn euclidean has
|
|
# worse numeric precision. 'minkowski' is slower but more accurate.
|
|
clust1 = OPTICS(min_samples=5).fit(X)
|
|
|
|
assert_array_equal(clust1.ordering_, np.array(o1))
|
|
assert_array_equal(clust1.predecessor_[clust1.ordering_], np.array(p1))
|
|
assert_allclose(clust1.reachability_[clust1.ordering_], np.array(r1))
|
|
# ELKI currently does not print the core distances (which are not used much
|
|
# in literature, but we can at least ensure to have this consistency:
|
|
for i in clust1.ordering_[1:]:
|
|
assert clust1.reachability_[i] >= clust1.core_distances_[clust1.predecessor_[i]]
|
|
|
|
# Expected values, computed with (future) ELKI 0.7.5 using
|
|
r2 = [
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
0.27219111215810565,
|
|
0.13260875220533205,
|
|
0.13260875220533205,
|
|
0.09890587675958984,
|
|
0.09890587675958984,
|
|
0.13548790801634494,
|
|
0.1575483940837384,
|
|
0.17515137170530226,
|
|
0.17575920159442388,
|
|
0.27219111215810565,
|
|
0.4928068613197889,
|
|
np.inf,
|
|
0.2666183922512113,
|
|
0.18765711877083036,
|
|
0.1821471333893275,
|
|
0.1821471333893275,
|
|
0.1821471333893275,
|
|
0.18715928772277457,
|
|
0.18765711877083036,
|
|
0.18765711877083036,
|
|
0.25468325192031926,
|
|
np.inf,
|
|
0.2552805046961355,
|
|
0.2552805046961355,
|
|
0.24944622248445714,
|
|
0.24944622248445714,
|
|
0.24944622248445714,
|
|
0.2552805046961355,
|
|
0.2552805046961355,
|
|
0.3086779122185853,
|
|
0.34466409325984865,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
np.inf,
|
|
]
|
|
o2 = [
|
|
0,
|
|
1,
|
|
2,
|
|
3,
|
|
4,
|
|
5,
|
|
6,
|
|
7,
|
|
8,
|
|
9,
|
|
10,
|
|
15,
|
|
11,
|
|
13,
|
|
17,
|
|
19,
|
|
18,
|
|
12,
|
|
16,
|
|
14,
|
|
47,
|
|
46,
|
|
20,
|
|
22,
|
|
25,
|
|
23,
|
|
27,
|
|
29,
|
|
24,
|
|
26,
|
|
28,
|
|
21,
|
|
30,
|
|
32,
|
|
34,
|
|
33,
|
|
38,
|
|
39,
|
|
35,
|
|
37,
|
|
36,
|
|
31,
|
|
40,
|
|
41,
|
|
42,
|
|
43,
|
|
44,
|
|
45,
|
|
48,
|
|
49,
|
|
50,
|
|
51,
|
|
52,
|
|
53,
|
|
54,
|
|
55,
|
|
56,
|
|
57,
|
|
58,
|
|
59,
|
|
]
|
|
p2 = [
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
10,
|
|
15,
|
|
15,
|
|
13,
|
|
13,
|
|
15,
|
|
11,
|
|
19,
|
|
15,
|
|
10,
|
|
47,
|
|
-1,
|
|
20,
|
|
22,
|
|
25,
|
|
25,
|
|
25,
|
|
25,
|
|
22,
|
|
22,
|
|
23,
|
|
-1,
|
|
30,
|
|
30,
|
|
34,
|
|
34,
|
|
34,
|
|
32,
|
|
32,
|
|
37,
|
|
38,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
]
|
|
clust2 = OPTICS(min_samples=5, max_eps=0.5).fit(X)
|
|
|
|
assert_array_equal(clust2.ordering_, np.array(o2))
|
|
assert_array_equal(clust2.predecessor_[clust2.ordering_], np.array(p2))
|
|
assert_allclose(clust2.reachability_[clust2.ordering_], np.array(r2))
|
|
|
|
index = np.where(clust1.core_distances_ <= 0.5)[0]
|
|
assert_allclose(clust1.core_distances_[index], clust2.core_distances_[index])
|
|
|
|
|
|
def test_extract_dbscan(global_dtype):
|
|
# testing an easy dbscan case. Not including clusters with different
|
|
# densities.
|
|
rng = np.random.RandomState(0)
|
|
n_points_per_cluster = 20
|
|
C1 = [-5, -2] + 0.2 * rng.randn(n_points_per_cluster, 2)
|
|
C2 = [4, -1] + 0.2 * rng.randn(n_points_per_cluster, 2)
|
|
C3 = [1, 2] + 0.2 * rng.randn(n_points_per_cluster, 2)
|
|
C4 = [-2, 3] + 0.2 * rng.randn(n_points_per_cluster, 2)
|
|
X = np.vstack((C1, C2, C3, C4)).astype(global_dtype, copy=False)
|
|
|
|
clust = OPTICS(cluster_method="dbscan", eps=0.5).fit(X)
|
|
assert_array_equal(np.sort(np.unique(clust.labels_)), [0, 1, 2, 3])
|
|
|
|
|
|
@pytest.mark.parametrize("is_sparse", [False, True])
|
|
def test_precomputed_dists(is_sparse, global_dtype):
|
|
redX = X[::2].astype(global_dtype, copy=False)
|
|
dists = pairwise_distances(redX, metric="euclidean")
|
|
dists = sparse.csr_matrix(dists) if is_sparse else dists
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore", EfficiencyWarning)
|
|
clust1 = OPTICS(min_samples=10, algorithm="brute", metric="precomputed").fit(
|
|
dists
|
|
)
|
|
clust2 = OPTICS(min_samples=10, algorithm="brute", metric="euclidean").fit(redX)
|
|
|
|
assert_allclose(clust1.reachability_, clust2.reachability_)
|
|
assert_array_equal(clust1.labels_, clust2.labels_)
|