Inzynierka/Lib/site-packages/pandas/tests/io/parser/test_network.py

321 lines
12 KiB
Python
Raw Normal View History

2023-06-02 12:51:02 +02:00
"""
Tests parsers ability to read and parse non-local files
and hence require a network connection to be read.
"""
from io import (
BytesIO,
StringIO,
)
import logging
import numpy as np
import pytest
from pandas.compat import is_ci_environment
import pandas.util._test_decorators as td
from pandas import DataFrame
import pandas._testing as tm
from pandas.tests.io.test_compression import _compression_to_extension
from pandas.io.feather_format import read_feather
from pandas.io.parsers import read_csv
@pytest.mark.network
@tm.network(
url=(
"https://github.com/pandas-dev/pandas/raw/main/"
"pandas/tests/io/parser/data/salaries.csv"
),
check_before_test=True,
)
@pytest.mark.parametrize("mode", ["explicit", "infer"])
@pytest.mark.parametrize("engine", ["python", "c"])
def test_compressed_urls(salaries_table, mode, engine, compression_only):
# test reading compressed urls with various engines and
# extension inference
extension = _compression_to_extension[compression_only]
base_url = (
"https://github.com/pandas-dev/pandas/raw/main/"
"pandas/tests/io/parser/data/salaries.csv"
)
url = base_url + extension
if mode != "explicit":
compression_only = mode
url_table = read_csv(url, sep="\t", compression=compression_only, engine=engine)
tm.assert_frame_equal(url_table, salaries_table)
@pytest.mark.network
@tm.network(
url=(
"https://raw.githubusercontent.com/pandas-dev/pandas/main/"
"pandas/tests/io/parser/data/unicode_series.csv"
),
check_before_test=True,
)
def test_url_encoding_csv():
"""
read_csv should honor the requested encoding for URLs.
GH 10424
"""
path = (
"https://raw.githubusercontent.com/pandas-dev/pandas/main/"
+ "pandas/tests/io/parser/data/unicode_series.csv"
)
df = read_csv(path, encoding="latin-1", header=None)
assert df.loc[15, 1] == "Á köldum klaka (Cold Fever) (1994)"
@pytest.fixture
def tips_df(datapath):
"""DataFrame with the tips dataset."""
return read_csv(datapath("io", "data", "csv", "tips.csv"))
@pytest.mark.single_cpu
@pytest.mark.usefixtures("s3_resource")
@pytest.mark.xfail(
reason="CI race condition GH 45433, GH 44584",
raises=FileNotFoundError,
strict=False,
)
@td.skip_if_not_us_locale()
class TestS3:
@td.skip_if_no("s3fs")
def test_parse_public_s3_bucket(self, tips_df, s3so):
# more of an integration test due to the not-public contents portion
# can probably mock this though.
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
df = read_csv(
"s3://pandas-test/tips.csv" + ext,
compression=comp,
storage_options=s3so,
)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(df, tips_df)
# Read public file from bucket with not-public contents
df = read_csv("s3://cant_get_it/tips.csv", storage_options=s3so)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(df, tips_df)
def test_parse_public_s3n_bucket(self, tips_df, s3so):
# Read from AWS s3 as "s3n" URL
df = read_csv("s3n://pandas-test/tips.csv", nrows=10, storage_options=s3so)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(tips_df.iloc[:10], df)
def test_parse_public_s3a_bucket(self, tips_df, s3so):
# Read from AWS s3 as "s3a" URL
df = read_csv("s3a://pandas-test/tips.csv", nrows=10, storage_options=s3so)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(tips_df.iloc[:10], df)
def test_parse_public_s3_bucket_nrows(self, tips_df, s3so):
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
df = read_csv(
"s3://pandas-test/tips.csv" + ext,
nrows=10,
compression=comp,
storage_options=s3so,
)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(tips_df.iloc[:10], df)
def test_parse_public_s3_bucket_chunked(self, tips_df, s3so):
# Read with a chunksize
chunksize = 5
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
with read_csv(
"s3://pandas-test/tips.csv" + ext,
chunksize=chunksize,
compression=comp,
storage_options=s3so,
) as df_reader:
assert df_reader.chunksize == chunksize
for i_chunk in [0, 1, 2]:
# Read a couple of chunks and make sure we see them
# properly.
df = df_reader.get_chunk()
assert isinstance(df, DataFrame)
assert not df.empty
true_df = tips_df.iloc[
chunksize * i_chunk : chunksize * (i_chunk + 1)
]
tm.assert_frame_equal(true_df, df)
def test_parse_public_s3_bucket_chunked_python(self, tips_df, s3so):
# Read with a chunksize using the Python parser
chunksize = 5
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
with read_csv(
"s3://pandas-test/tips.csv" + ext,
chunksize=chunksize,
compression=comp,
engine="python",
storage_options=s3so,
) as df_reader:
assert df_reader.chunksize == chunksize
for i_chunk in [0, 1, 2]:
# Read a couple of chunks and make sure we see them properly.
df = df_reader.get_chunk()
assert isinstance(df, DataFrame)
assert not df.empty
true_df = tips_df.iloc[
chunksize * i_chunk : chunksize * (i_chunk + 1)
]
tm.assert_frame_equal(true_df, df)
def test_parse_public_s3_bucket_python(self, tips_df, s3so):
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
df = read_csv(
"s3://pandas-test/tips.csv" + ext,
engine="python",
compression=comp,
storage_options=s3so,
)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(df, tips_df)
def test_infer_s3_compression(self, tips_df, s3so):
for ext in ["", ".gz", ".bz2"]:
df = read_csv(
"s3://pandas-test/tips.csv" + ext,
engine="python",
compression="infer",
storage_options=s3so,
)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(df, tips_df)
def test_parse_public_s3_bucket_nrows_python(self, tips_df, s3so):
for ext, comp in [("", None), (".gz", "gzip"), (".bz2", "bz2")]:
df = read_csv(
"s3://pandas-test/tips.csv" + ext,
engine="python",
nrows=10,
compression=comp,
storage_options=s3so,
)
assert isinstance(df, DataFrame)
assert not df.empty
tm.assert_frame_equal(tips_df.iloc[:10], df)
def test_read_s3_fails(self, s3so):
msg = "The specified bucket does not exist"
with pytest.raises(OSError, match=msg):
read_csv("s3://nyqpug/asdf.csv", storage_options=s3so)
# Receive a permission error when trying to read a private bucket.
# It's irrelevant here that this isn't actually a table.
with pytest.raises(OSError, match=msg):
read_csv("s3://cant_get_it/file.csv")
@pytest.mark.xfail(reason="GH#39155 s3fs upgrade", strict=False)
def test_write_s3_csv_fails(self, tips_df, s3so):
# GH 32486
# Attempting to write to an invalid S3 path should raise
import botocore
# GH 34087
# https://boto3.amazonaws.com/v1/documentation/api/latest/guide/error-handling.html
# Catch a ClientError since AWS Service Errors are defined dynamically
error = (FileNotFoundError, botocore.exceptions.ClientError)
with pytest.raises(error, match="The specified bucket does not exist"):
tips_df.to_csv(
"s3://an_s3_bucket_data_doesnt_exit/not_real.csv", storage_options=s3so
)
@pytest.mark.xfail(reason="GH#39155 s3fs upgrade", strict=False)
@td.skip_if_no("pyarrow")
def test_write_s3_parquet_fails(self, tips_df, s3so):
# GH 27679
# Attempting to write to an invalid S3 path should raise
import botocore
# GH 34087
# https://boto3.amazonaws.com/v1/documentation/api/latest/guide/error-handling.html
# Catch a ClientError since AWS Service Errors are defined dynamically
error = (FileNotFoundError, botocore.exceptions.ClientError)
with pytest.raises(error, match="The specified bucket does not exist"):
tips_df.to_parquet(
"s3://an_s3_bucket_data_doesnt_exit/not_real.parquet",
storage_options=s3so,
)
@pytest.mark.single_cpu
def test_read_csv_handles_boto_s3_object(self, s3_resource, tips_file):
# see gh-16135
s3_object = s3_resource.meta.client.get_object(
Bucket="pandas-test", Key="tips.csv"
)
with BytesIO(s3_object["Body"].read()) as buffer:
result = read_csv(buffer, encoding="utf8")
assert isinstance(result, DataFrame)
assert not result.empty
expected = read_csv(tips_file)
tm.assert_frame_equal(result, expected)
@pytest.mark.single_cpu
@pytest.mark.skipif(
is_ci_environment(),
reason="This test can hang in our CI min_versions build "
"and leads to '##[error]The runner has "
"received a shutdown signal...' in GHA. GH: 45651",
)
def test_read_csv_chunked_download(self, s3_resource, caplog, s3so):
# 8 MB, S3FS uses 5MB chunks
import s3fs
df = DataFrame(np.random.randn(100000, 4), columns=list("abcd"))
str_buf = StringIO()
df.to_csv(str_buf)
buf = BytesIO(str_buf.getvalue().encode("utf-8"))
s3_resource.Bucket("pandas-test").put_object(Key="large-file.csv", Body=buf)
# Possibly some state leaking in between tests.
# If we don't clear this cache, we saw `GetObject operation: Forbidden`.
# Presumably the s3fs instance is being cached, with the directory listing
# from *before* we add the large-file.csv in the pandas-test bucket.
s3fs.S3FileSystem.clear_instance_cache()
with caplog.at_level(logging.DEBUG, logger="s3fs"):
read_csv("s3://pandas-test/large-file.csv", nrows=5, storage_options=s3so)
# log of fetch_range (start, stop)
assert (0, 5505024) in (x.args[-2:] for x in caplog.records)
def test_read_s3_with_hash_in_key(self, tips_df, s3so):
# GH 25945
result = read_csv("s3://pandas-test/tips#1.csv", storage_options=s3so)
tm.assert_frame_equal(tips_df, result)
@td.skip_if_no("pyarrow")
def test_read_feather_s3_file_path(self, feather_file, s3so):
# GH 29055
expected = read_feather(feather_file)
res = read_feather(
"s3://pandas-test/simple_dataset.feather", storage_options=s3so
)
tm.assert_frame_equal(expected, res)