Inzynierka/Lib/site-packages/pandas/tests/tslibs/test_array_to_datetime.py
2023-06-02 12:51:02 +02:00

204 lines
5.9 KiB
Python

from datetime import (
date,
datetime,
timedelta,
timezone,
)
from dateutil.tz.tz import tzoffset
import numpy as np
import pytest
from pandas._libs import (
iNaT,
tslib,
)
from pandas import Timestamp
import pandas._testing as tm
@pytest.mark.parametrize(
"data,expected",
[
(
["01-01-2013", "01-02-2013"],
[
"2013-01-01T00:00:00.000000000",
"2013-01-02T00:00:00.000000000",
],
),
(
["Mon Sep 16 2013", "Tue Sep 17 2013"],
[
"2013-09-16T00:00:00.000000000",
"2013-09-17T00:00:00.000000000",
],
),
],
)
def test_parsing_valid_dates(data, expected):
arr = np.array(data, dtype=object)
result, _ = tslib.array_to_datetime(arr)
expected = np.array(expected, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"dt_string, expected_tz",
[
["01-01-2013 08:00:00+08:00", 480],
["2013-01-01T08:00:00.000000000+0800", 480],
["2012-12-31T16:00:00.000000000-0800", -480],
["12-31-2012 23:00:00-01:00", -60],
],
)
def test_parsing_timezone_offsets(dt_string, expected_tz):
# All of these datetime strings with offsets are equivalent
# to the same datetime after the timezone offset is added.
arr = np.array(["01-01-2013 00:00:00"], dtype=object)
expected, _ = tslib.array_to_datetime(arr)
arr = np.array([dt_string], dtype=object)
result, result_tz = tslib.array_to_datetime(arr)
tm.assert_numpy_array_equal(result, expected)
assert result_tz == timezone(timedelta(minutes=expected_tz))
def test_parsing_non_iso_timezone_offset():
dt_string = "01-01-2013T00:00:00.000000000+0000"
arr = np.array([dt_string], dtype=object)
with tm.assert_produces_warning(None):
# GH#50949 should not get tzlocal-deprecation warning here
result, result_tz = tslib.array_to_datetime(arr)
expected = np.array([np.datetime64("2013-01-01 00:00:00.000000000")])
tm.assert_numpy_array_equal(result, expected)
assert result_tz is timezone.utc
def test_parsing_different_timezone_offsets():
# see gh-17697
data = ["2015-11-18 15:30:00+05:30", "2015-11-18 15:30:00+06:30"]
data = np.array(data, dtype=object)
result, result_tz = tslib.array_to_datetime(data)
expected = np.array(
[
datetime(2015, 11, 18, 15, 30, tzinfo=tzoffset(None, 19800)),
datetime(2015, 11, 18, 15, 30, tzinfo=tzoffset(None, 23400)),
],
dtype=object,
)
tm.assert_numpy_array_equal(result, expected)
assert result_tz is None
@pytest.mark.parametrize(
"data", [["-352.737091", "183.575577"], ["1", "2", "3", "4", "5"]]
)
def test_number_looking_strings_not_into_datetime(data):
# see gh-4601
#
# These strings don't look like datetimes, so
# they shouldn't be attempted to be converted.
arr = np.array(data, dtype=object)
result, _ = tslib.array_to_datetime(arr, errors="ignore")
tm.assert_numpy_array_equal(result, arr)
@pytest.mark.parametrize(
"invalid_date",
[
date(1000, 1, 1),
datetime(1000, 1, 1),
"1000-01-01",
"Jan 1, 1000",
np.datetime64("1000-01-01"),
],
)
@pytest.mark.parametrize("errors", ["coerce", "raise"])
def test_coerce_outside_ns_bounds(invalid_date, errors):
arr = np.array([invalid_date], dtype="object")
kwargs = {"values": arr, "errors": errors}
if errors == "raise":
msg = "^Out of bounds nanosecond timestamp: .*, at position 0$"
with pytest.raises(ValueError, match=msg):
tslib.array_to_datetime(**kwargs)
else: # coerce.
result, _ = tslib.array_to_datetime(**kwargs)
expected = np.array([iNaT], dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
def test_coerce_outside_ns_bounds_one_valid():
arr = np.array(["1/1/1000", "1/1/2000"], dtype=object)
result, _ = tslib.array_to_datetime(arr, errors="coerce")
expected = [iNaT, "2000-01-01T00:00:00.000000000"]
expected = np.array(expected, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("errors", ["ignore", "coerce"])
def test_coerce_of_invalid_datetimes(errors):
arr = np.array(["01-01-2013", "not_a_date", "1"], dtype=object)
kwargs = {"values": arr, "errors": errors}
if errors == "ignore":
# Without coercing, the presence of any invalid
# dates prevents any values from being converted.
result, _ = tslib.array_to_datetime(**kwargs)
tm.assert_numpy_array_equal(result, arr)
else: # coerce.
# With coercing, the invalid dates becomes iNaT
result, _ = tslib.array_to_datetime(arr, errors="coerce")
expected = ["2013-01-01T00:00:00.000000000", iNaT, iNaT]
tm.assert_numpy_array_equal(result, np.array(expected, dtype="M8[ns]"))
def test_to_datetime_barely_out_of_bounds():
# see gh-19382, gh-19529
#
# Close enough to bounds that dropping nanos
# would result in an in-bounds datetime.
arr = np.array(["2262-04-11 23:47:16.854775808"], dtype=object)
msg = "^Out of bounds nanosecond timestamp: 2262-04-11 23:47:16, at position 0$"
with pytest.raises(tslib.OutOfBoundsDatetime, match=msg):
tslib.array_to_datetime(arr)
class SubDatetime(datetime):
pass
@pytest.mark.parametrize(
"data,expected",
[
([SubDatetime(2000, 1, 1)], ["2000-01-01T00:00:00.000000000"]),
([datetime(2000, 1, 1)], ["2000-01-01T00:00:00.000000000"]),
([Timestamp(2000, 1, 1)], ["2000-01-01T00:00:00.000000000"]),
],
)
def test_datetime_subclass(data, expected):
# GH 25851
# ensure that subclassed datetime works with
# array_to_datetime
arr = np.array(data, dtype=object)
result, _ = tslib.array_to_datetime(arr)
expected = np.array(expected, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)