Inzynierka/Lib/site-packages/sklearn/cluster/tests/test_affinity_propagation.py
2023-06-02 12:51:02 +02:00

309 lines
11 KiB
Python

"""
Testing for Clustering methods
"""
import numpy as np
import pytest
import warnings
from scipy.sparse import csr_matrix
from sklearn.exceptions import ConvergenceWarning, NotFittedError
from sklearn.utils._testing import assert_array_equal, assert_allclose
from sklearn.cluster import AffinityPropagation
from sklearn.cluster._affinity_propagation import _equal_similarities_and_preferences
from sklearn.cluster import affinity_propagation
from sklearn.datasets import make_blobs
from sklearn.metrics import euclidean_distances
n_clusters = 3
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
X, _ = make_blobs(
n_samples=60,
n_features=2,
centers=centers,
cluster_std=0.4,
shuffle=True,
random_state=0,
)
# TODO: AffinityPropagation must preserve dtype for its fitted attributes
# and test must be created accordingly to this new behavior.
# For more details, see: https://github.com/scikit-learn/scikit-learn/issues/11000
def test_affinity_propagation(global_random_seed, global_dtype):
"""Test consistency of the affinity propagations."""
S = -euclidean_distances(X.astype(global_dtype, copy=False), squared=True)
preference = np.median(S) * 10
cluster_centers_indices, labels = affinity_propagation(
S, preference=preference, random_state=global_random_seed
)
n_clusters_ = len(cluster_centers_indices)
assert n_clusters == n_clusters_
def test_affinity_propagation_precomputed():
"""Check equality of precomputed affinity matrix to internally computed affinity
matrix.
"""
S = -euclidean_distances(X, squared=True)
preference = np.median(S) * 10
af = AffinityPropagation(
preference=preference, affinity="precomputed", random_state=28
)
labels_precomputed = af.fit(S).labels_
af = AffinityPropagation(preference=preference, verbose=True, random_state=37)
labels = af.fit(X).labels_
assert_array_equal(labels, labels_precomputed)
cluster_centers_indices = af.cluster_centers_indices_
n_clusters_ = len(cluster_centers_indices)
assert np.unique(labels).size == n_clusters_
assert n_clusters == n_clusters_
def test_affinity_propagation_no_copy():
"""Check behaviour of not copying the input data."""
S = -euclidean_distances(X, squared=True)
S_original = S.copy()
preference = np.median(S) * 10
assert not np.allclose(S.diagonal(), preference)
# with copy=True S should not be modified
affinity_propagation(S, preference=preference, copy=True, random_state=0)
assert_allclose(S, S_original)
assert not np.allclose(S.diagonal(), preference)
assert_allclose(S.diagonal(), np.zeros(S.shape[0]))
# with copy=False S will be modified inplace
affinity_propagation(S, preference=preference, copy=False, random_state=0)
assert_allclose(S.diagonal(), preference)
# test that copy=True and copy=False lead to the same result
S = S_original.copy()
af = AffinityPropagation(preference=preference, verbose=True, random_state=0)
labels = af.fit(X).labels_
_, labels_no_copy = affinity_propagation(
S, preference=preference, copy=False, random_state=74
)
assert_array_equal(labels, labels_no_copy)
def test_affinity_propagation_affinity_shape():
"""Check the shape of the affinity matrix when using `affinity_propagation."""
S = -euclidean_distances(X, squared=True)
err_msg = "The matrix of similarities must be a square array"
with pytest.raises(ValueError, match=err_msg):
affinity_propagation(S[:, :-1])
def test_affinity_propagation_precomputed_with_sparse_input():
err_msg = "A sparse matrix was passed, but dense data is required"
with pytest.raises(TypeError, match=err_msg):
AffinityPropagation(affinity="precomputed").fit(csr_matrix((3, 3)))
def test_affinity_propagation_predict(global_random_seed, global_dtype):
# Test AffinityPropagation.predict
af = AffinityPropagation(affinity="euclidean", random_state=global_random_seed)
X_ = X.astype(global_dtype, copy=False)
labels = af.fit_predict(X_)
labels2 = af.predict(X_)
assert_array_equal(labels, labels2)
def test_affinity_propagation_predict_error():
# Test exception in AffinityPropagation.predict
# Not fitted.
af = AffinityPropagation(affinity="euclidean")
with pytest.raises(NotFittedError):
af.predict(X)
# Predict not supported when affinity="precomputed".
S = np.dot(X, X.T)
af = AffinityPropagation(affinity="precomputed", random_state=57)
af.fit(S)
with pytest.raises(ValueError, match="expecting 60 features as input"):
af.predict(X)
def test_affinity_propagation_fit_non_convergence(global_dtype):
# In case of non-convergence of affinity_propagation(), the cluster
# centers should be an empty array and training samples should be labelled
# as noise (-1)
X = np.array([[0, 0], [1, 1], [-2, -2]], dtype=global_dtype)
# Force non-convergence by allowing only a single iteration
af = AffinityPropagation(preference=-10, max_iter=1, random_state=82)
with pytest.warns(ConvergenceWarning):
af.fit(X)
assert_allclose(np.empty((0, 2)), af.cluster_centers_)
assert_array_equal(np.array([-1, -1, -1]), af.labels_)
def test_affinity_propagation_equal_mutual_similarities(global_dtype):
X = np.array([[-1, 1], [1, -1]], dtype=global_dtype)
S = -euclidean_distances(X, squared=True)
# setting preference > similarity
with pytest.warns(UserWarning, match="mutually equal"):
cluster_center_indices, labels = affinity_propagation(S, preference=0)
# expect every sample to become an exemplar
assert_array_equal([0, 1], cluster_center_indices)
assert_array_equal([0, 1], labels)
# setting preference < similarity
with pytest.warns(UserWarning, match="mutually equal"):
cluster_center_indices, labels = affinity_propagation(S, preference=-10)
# expect one cluster, with arbitrary (first) sample as exemplar
assert_array_equal([0], cluster_center_indices)
assert_array_equal([0, 0], labels)
# setting different preferences
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
cluster_center_indices, labels = affinity_propagation(
S, preference=[-20, -10], random_state=37
)
# expect one cluster, with highest-preference sample as exemplar
assert_array_equal([1], cluster_center_indices)
assert_array_equal([0, 0], labels)
def test_affinity_propagation_predict_non_convergence(global_dtype):
# In case of non-convergence of affinity_propagation(), the cluster
# centers should be an empty array
X = np.array([[0, 0], [1, 1], [-2, -2]], dtype=global_dtype)
# Force non-convergence by allowing only a single iteration
with pytest.warns(ConvergenceWarning):
af = AffinityPropagation(preference=-10, max_iter=1, random_state=75).fit(X)
# At prediction time, consider new samples as noise since there are no
# clusters
to_predict = np.array([[2, 2], [3, 3], [4, 4]])
with pytest.warns(ConvergenceWarning):
y = af.predict(to_predict)
assert_array_equal(np.array([-1, -1, -1]), y)
def test_affinity_propagation_non_convergence_regressiontest(global_dtype):
X = np.array(
[[1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0], [0, 0, 1, 0, 0, 1]], dtype=global_dtype
)
af = AffinityPropagation(affinity="euclidean", max_iter=2, random_state=34)
msg = (
"Affinity propagation did not converge, this model may return degenerate"
" cluster centers and labels."
)
with pytest.warns(ConvergenceWarning, match=msg):
af.fit(X)
assert_array_equal(np.array([0, 0, 0]), af.labels_)
def test_equal_similarities_and_preferences(global_dtype):
# Unequal distances
X = np.array([[0, 0], [1, 1], [-2, -2]], dtype=global_dtype)
S = -euclidean_distances(X, squared=True)
assert not _equal_similarities_and_preferences(S, np.array(0))
assert not _equal_similarities_and_preferences(S, np.array([0, 0]))
assert not _equal_similarities_and_preferences(S, np.array([0, 1]))
# Equal distances
X = np.array([[0, 0], [1, 1]], dtype=global_dtype)
S = -euclidean_distances(X, squared=True)
# Different preferences
assert not _equal_similarities_and_preferences(S, np.array([0, 1]))
# Same preferences
assert _equal_similarities_and_preferences(S, np.array([0, 0]))
assert _equal_similarities_and_preferences(S, np.array(0))
def test_affinity_propagation_random_state():
"""Check that different random states lead to different initialisations
by looking at the center locations after two iterations.
"""
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(
n_samples=300, centers=centers, cluster_std=0.5, random_state=0
)
# random_state = 0
ap = AffinityPropagation(convergence_iter=1, max_iter=2, random_state=0)
ap.fit(X)
centers0 = ap.cluster_centers_
# random_state = 76
ap = AffinityPropagation(convergence_iter=1, max_iter=2, random_state=76)
ap.fit(X)
centers76 = ap.cluster_centers_
# check that the centers have not yet converged to the same solution
assert np.mean((centers0 - centers76) ** 2) > 1
@pytest.mark.parametrize("centers", [csr_matrix(np.zeros((1, 10))), np.zeros((1, 10))])
def test_affinity_propagation_convergence_warning_dense_sparse(centers, global_dtype):
"""
Check that having sparse or dense `centers` format should not
influence the convergence.
Non-regression test for gh-13334.
"""
rng = np.random.RandomState(42)
X = rng.rand(40, 10).astype(global_dtype, copy=False)
y = (4 * rng.rand(40)).astype(int)
ap = AffinityPropagation(random_state=46)
ap.fit(X, y)
ap.cluster_centers_ = centers
with warnings.catch_warnings():
warnings.simplefilter("error", ConvergenceWarning)
assert_array_equal(ap.predict(X), np.zeros(X.shape[0], dtype=int))
# FIXME; this test is broken with different random states, needs to be revisited
def test_correct_clusters(global_dtype):
# Test to fix incorrect clusters due to dtype change
# (non-regression test for issue #10832)
X = np.array(
[[1, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 1]], dtype=global_dtype
)
afp = AffinityPropagation(preference=1, affinity="precomputed", random_state=0).fit(
X
)
expected = np.array([0, 1, 1, 2])
assert_array_equal(afp.labels_, expected)
def test_sparse_input_for_predict():
# Test to make sure sparse inputs are accepted for predict
# (non-regression test for issue #20049)
af = AffinityPropagation(affinity="euclidean", random_state=42)
af.fit(X)
labels = af.predict(csr_matrix((2, 2)))
assert_array_equal(labels, (2, 2))
def test_sparse_input_for_fit_predict():
# Test to make sure sparse inputs are accepted for fit_predict
# (non-regression test for issue #20049)
af = AffinityPropagation(affinity="euclidean", random_state=42)
rng = np.random.RandomState(42)
X = csr_matrix(rng.randint(0, 2, size=(5, 5)))
labels = af.fit_predict(X)
assert_array_equal(labels, (0, 1, 1, 2, 3))