346 lines
12 KiB
Python
346 lines
12 KiB
Python
from itertools import product
|
|
import numpy as np
|
|
import math
|
|
import pytest
|
|
|
|
from sklearn import datasets, clone
|
|
from sklearn import manifold
|
|
from sklearn import neighbors
|
|
from sklearn import pipeline
|
|
from sklearn import preprocessing
|
|
from sklearn.datasets import make_blobs
|
|
from sklearn.metrics.pairwise import pairwise_distances
|
|
from sklearn.utils._testing import (
|
|
assert_allclose,
|
|
assert_allclose_dense_sparse,
|
|
assert_array_equal,
|
|
)
|
|
from scipy.sparse import rand as sparse_rand
|
|
|
|
eigen_solvers = ["auto", "dense", "arpack"]
|
|
path_methods = ["auto", "FW", "D"]
|
|
|
|
|
|
def create_sample_data(dtype, n_pts=25, add_noise=False):
|
|
# grid of equidistant points in 2D, n_components = n_dim
|
|
n_per_side = int(math.sqrt(n_pts))
|
|
X = np.array(list(product(range(n_per_side), repeat=2))).astype(dtype, copy=False)
|
|
if add_noise:
|
|
# add noise in a third dimension
|
|
rng = np.random.RandomState(0)
|
|
noise = 0.1 * rng.randn(n_pts, 1).astype(dtype, copy=False)
|
|
X = np.concatenate((X, noise), 1)
|
|
return X
|
|
|
|
|
|
@pytest.mark.parametrize("n_neighbors, radius", [(24, None), (None, np.inf)])
|
|
@pytest.mark.parametrize("eigen_solver", eigen_solvers)
|
|
@pytest.mark.parametrize("path_method", path_methods)
|
|
def test_isomap_simple_grid(
|
|
global_dtype, n_neighbors, radius, eigen_solver, path_method
|
|
):
|
|
# Isomap should preserve distances when all neighbors are used
|
|
n_pts = 25
|
|
X = create_sample_data(global_dtype, n_pts=n_pts, add_noise=False)
|
|
|
|
# distances from each point to all others
|
|
if n_neighbors is not None:
|
|
G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance")
|
|
else:
|
|
G = neighbors.radius_neighbors_graph(X, radius, mode="distance")
|
|
|
|
clf = manifold.Isomap(
|
|
n_neighbors=n_neighbors,
|
|
radius=radius,
|
|
n_components=2,
|
|
eigen_solver=eigen_solver,
|
|
path_method=path_method,
|
|
)
|
|
clf.fit(X)
|
|
|
|
if n_neighbors is not None:
|
|
G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode="distance")
|
|
else:
|
|
G_iso = neighbors.radius_neighbors_graph(
|
|
clf.embedding_, radius, mode="distance"
|
|
)
|
|
atol = 1e-5 if global_dtype == np.float32 else 0
|
|
assert_allclose_dense_sparse(G, G_iso, atol=atol)
|
|
|
|
|
|
@pytest.mark.parametrize("n_neighbors, radius", [(24, None), (None, np.inf)])
|
|
@pytest.mark.parametrize("eigen_solver", eigen_solvers)
|
|
@pytest.mark.parametrize("path_method", path_methods)
|
|
def test_isomap_reconstruction_error(
|
|
global_dtype, n_neighbors, radius, eigen_solver, path_method
|
|
):
|
|
if global_dtype is np.float32:
|
|
pytest.skip(
|
|
"Skipping test due to numerical instabilities on float32 data"
|
|
"from KernelCenterer used in the reconstruction_error method"
|
|
)
|
|
|
|
# Same setup as in test_isomap_simple_grid, with an added dimension
|
|
n_pts = 25
|
|
X = create_sample_data(global_dtype, n_pts=n_pts, add_noise=True)
|
|
|
|
# compute input kernel
|
|
if n_neighbors is not None:
|
|
G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance").toarray()
|
|
else:
|
|
G = neighbors.radius_neighbors_graph(X, radius, mode="distance").toarray()
|
|
centerer = preprocessing.KernelCenterer()
|
|
K = centerer.fit_transform(-0.5 * G**2)
|
|
|
|
clf = manifold.Isomap(
|
|
n_neighbors=n_neighbors,
|
|
radius=radius,
|
|
n_components=2,
|
|
eigen_solver=eigen_solver,
|
|
path_method=path_method,
|
|
)
|
|
clf.fit(X)
|
|
|
|
# compute output kernel
|
|
if n_neighbors is not None:
|
|
G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode="distance")
|
|
else:
|
|
G_iso = neighbors.radius_neighbors_graph(
|
|
clf.embedding_, radius, mode="distance"
|
|
)
|
|
G_iso = G_iso.toarray()
|
|
K_iso = centerer.fit_transform(-0.5 * G_iso**2)
|
|
|
|
# make sure error agrees
|
|
reconstruction_error = np.linalg.norm(K - K_iso) / n_pts
|
|
atol = 1e-5 if global_dtype == np.float32 else 0
|
|
assert_allclose(reconstruction_error, clf.reconstruction_error(), atol=atol)
|
|
|
|
|
|
@pytest.mark.parametrize("n_neighbors, radius", [(2, None), (None, 0.5)])
|
|
def test_transform(global_dtype, n_neighbors, radius):
|
|
n_samples = 200
|
|
n_components = 10
|
|
noise_scale = 0.01
|
|
|
|
# Create S-curve dataset
|
|
X, y = datasets.make_s_curve(n_samples, random_state=0)
|
|
|
|
X = X.astype(global_dtype, copy=False)
|
|
|
|
# Compute isomap embedding
|
|
iso = manifold.Isomap(
|
|
n_components=n_components, n_neighbors=n_neighbors, radius=radius
|
|
)
|
|
X_iso = iso.fit_transform(X)
|
|
|
|
# Re-embed a noisy version of the points
|
|
rng = np.random.RandomState(0)
|
|
noise = noise_scale * rng.randn(*X.shape)
|
|
X_iso2 = iso.transform(X + noise)
|
|
|
|
# Make sure the rms error on re-embedding is comparable to noise_scale
|
|
assert np.sqrt(np.mean((X_iso - X_iso2) ** 2)) < 2 * noise_scale
|
|
|
|
|
|
@pytest.mark.parametrize("n_neighbors, radius", [(2, None), (None, 10.0)])
|
|
def test_pipeline(n_neighbors, radius, global_dtype):
|
|
# check that Isomap works fine as a transformer in a Pipeline
|
|
# only checks that no error is raised.
|
|
# TODO check that it actually does something useful
|
|
X, y = datasets.make_blobs(random_state=0)
|
|
X = X.astype(global_dtype, copy=False)
|
|
clf = pipeline.Pipeline(
|
|
[
|
|
("isomap", manifold.Isomap(n_neighbors=n_neighbors, radius=radius)),
|
|
("clf", neighbors.KNeighborsClassifier()),
|
|
]
|
|
)
|
|
clf.fit(X, y)
|
|
assert 0.9 < clf.score(X, y)
|
|
|
|
|
|
def test_pipeline_with_nearest_neighbors_transformer(global_dtype):
|
|
# Test chaining NearestNeighborsTransformer and Isomap with
|
|
# neighbors_algorithm='precomputed'
|
|
algorithm = "auto"
|
|
n_neighbors = 10
|
|
|
|
X, _ = datasets.make_blobs(random_state=0)
|
|
X2, _ = datasets.make_blobs(random_state=1)
|
|
|
|
X = X.astype(global_dtype, copy=False)
|
|
X2 = X2.astype(global_dtype, copy=False)
|
|
|
|
# compare the chained version and the compact version
|
|
est_chain = pipeline.make_pipeline(
|
|
neighbors.KNeighborsTransformer(
|
|
n_neighbors=n_neighbors, algorithm=algorithm, mode="distance"
|
|
),
|
|
manifold.Isomap(n_neighbors=n_neighbors, metric="precomputed"),
|
|
)
|
|
est_compact = manifold.Isomap(
|
|
n_neighbors=n_neighbors, neighbors_algorithm=algorithm
|
|
)
|
|
|
|
Xt_chain = est_chain.fit_transform(X)
|
|
Xt_compact = est_compact.fit_transform(X)
|
|
assert_allclose(Xt_chain, Xt_compact)
|
|
|
|
Xt_chain = est_chain.transform(X2)
|
|
Xt_compact = est_compact.transform(X2)
|
|
assert_allclose(Xt_chain, Xt_compact)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"metric, p, is_euclidean",
|
|
[
|
|
("euclidean", 2, True),
|
|
("manhattan", 1, False),
|
|
("minkowski", 1, False),
|
|
("minkowski", 2, True),
|
|
(lambda x1, x2: np.sqrt(np.sum(x1**2 + x2**2)), 2, False),
|
|
],
|
|
)
|
|
def test_different_metric(global_dtype, metric, p, is_euclidean):
|
|
# Isomap must work on various metric parameters work correctly
|
|
# and must default to euclidean.
|
|
X, _ = datasets.make_blobs(random_state=0)
|
|
X = X.astype(global_dtype, copy=False)
|
|
|
|
reference = manifold.Isomap().fit_transform(X)
|
|
embedding = manifold.Isomap(metric=metric, p=p).fit_transform(X)
|
|
|
|
if is_euclidean:
|
|
assert_allclose(embedding, reference)
|
|
else:
|
|
with pytest.raises(AssertionError, match="Not equal to tolerance"):
|
|
assert_allclose(embedding, reference)
|
|
|
|
|
|
def test_isomap_clone_bug():
|
|
# regression test for bug reported in #6062
|
|
model = manifold.Isomap()
|
|
for n_neighbors in [10, 15, 20]:
|
|
model.set_params(n_neighbors=n_neighbors)
|
|
model.fit(np.random.rand(50, 2))
|
|
assert model.nbrs_.n_neighbors == n_neighbors
|
|
|
|
|
|
@pytest.mark.parametrize("eigen_solver", eigen_solvers)
|
|
@pytest.mark.parametrize("path_method", path_methods)
|
|
def test_sparse_input(global_dtype, eigen_solver, path_method, global_random_seed):
|
|
# TODO: compare results on dense and sparse data as proposed in:
|
|
# https://github.com/scikit-learn/scikit-learn/pull/23585#discussion_r968388186
|
|
X = sparse_rand(
|
|
100,
|
|
3,
|
|
density=0.1,
|
|
format="csr",
|
|
dtype=global_dtype,
|
|
random_state=global_random_seed,
|
|
)
|
|
|
|
iso_dense = manifold.Isomap(
|
|
n_components=2,
|
|
eigen_solver=eigen_solver,
|
|
path_method=path_method,
|
|
n_neighbors=8,
|
|
)
|
|
iso_sparse = clone(iso_dense)
|
|
|
|
X_trans_dense = iso_dense.fit_transform(X.toarray())
|
|
X_trans_sparse = iso_sparse.fit_transform(X)
|
|
|
|
assert_allclose(X_trans_sparse, X_trans_dense, rtol=1e-4, atol=1e-4)
|
|
|
|
|
|
def test_isomap_fit_precomputed_radius_graph(global_dtype):
|
|
# Isomap.fit_transform must yield similar result when using
|
|
# a precomputed distance matrix.
|
|
|
|
X, y = datasets.make_s_curve(200, random_state=0)
|
|
X = X.astype(global_dtype, copy=False)
|
|
radius = 10
|
|
|
|
g = neighbors.radius_neighbors_graph(X, radius=radius, mode="distance")
|
|
isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="precomputed")
|
|
isomap.fit(g)
|
|
precomputed_result = isomap.embedding_
|
|
|
|
isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="minkowski")
|
|
result = isomap.fit_transform(X)
|
|
atol = 1e-5 if global_dtype == np.float32 else 0
|
|
assert_allclose(precomputed_result, result, atol=atol)
|
|
|
|
|
|
def test_isomap_fitted_attributes_dtype(global_dtype):
|
|
"""Check that the fitted attributes are stored accordingly to the
|
|
data type of X."""
|
|
iso = manifold.Isomap(n_neighbors=2)
|
|
|
|
X = np.array([[1, 2], [3, 4], [5, 6]], dtype=global_dtype)
|
|
|
|
iso.fit(X)
|
|
|
|
assert iso.dist_matrix_.dtype == global_dtype
|
|
assert iso.embedding_.dtype == global_dtype
|
|
|
|
|
|
def test_isomap_dtype_equivalence():
|
|
"""Check the equivalence of the results with 32 and 64 bits input."""
|
|
iso_32 = manifold.Isomap(n_neighbors=2)
|
|
X_32 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32)
|
|
iso_32.fit(X_32)
|
|
|
|
iso_64 = manifold.Isomap(n_neighbors=2)
|
|
X_64 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float64)
|
|
iso_64.fit(X_64)
|
|
|
|
assert_allclose(iso_32.dist_matrix_, iso_64.dist_matrix_)
|
|
|
|
|
|
def test_isomap_raise_error_when_neighbor_and_radius_both_set():
|
|
# Isomap.fit_transform must raise a ValueError if
|
|
# radius and n_neighbors are provided.
|
|
|
|
X, _ = datasets.load_digits(return_X_y=True)
|
|
isomap = manifold.Isomap(n_neighbors=3, radius=5.5)
|
|
msg = "Both n_neighbors and radius are provided"
|
|
with pytest.raises(ValueError, match=msg):
|
|
isomap.fit_transform(X)
|
|
|
|
|
|
def test_multiple_connected_components():
|
|
# Test that a warning is raised when the graph has multiple components
|
|
X = np.array([0, 1, 2, 5, 6, 7])[:, None]
|
|
with pytest.warns(UserWarning, match="number of connected components"):
|
|
manifold.Isomap(n_neighbors=2).fit(X)
|
|
|
|
|
|
def test_multiple_connected_components_metric_precomputed(global_dtype):
|
|
# Test that an error is raised when the graph has multiple components
|
|
# and when X is a precomputed neighbors graph.
|
|
X = np.array([0, 1, 2, 5, 6, 7])[:, None].astype(global_dtype, copy=False)
|
|
|
|
# works with a precomputed distance matrix (dense)
|
|
X_distances = pairwise_distances(X)
|
|
with pytest.warns(UserWarning, match="number of connected components"):
|
|
manifold.Isomap(n_neighbors=1, metric="precomputed").fit(X_distances)
|
|
|
|
# does not work with a precomputed neighbors graph (sparse)
|
|
X_graph = neighbors.kneighbors_graph(X, n_neighbors=2, mode="distance")
|
|
with pytest.raises(RuntimeError, match="number of connected components"):
|
|
manifold.Isomap(n_neighbors=1, metric="precomputed").fit(X_graph)
|
|
|
|
|
|
def test_get_feature_names_out():
|
|
"""Check get_feature_names_out for Isomap."""
|
|
X, y = make_blobs(random_state=0, n_features=4)
|
|
n_components = 2
|
|
|
|
iso = manifold.Isomap(n_components=n_components)
|
|
iso.fit_transform(X)
|
|
names = iso.get_feature_names_out()
|
|
assert_array_equal([f"isomap{i}" for i in range(n_components)], names)
|