117 lines
4.0 KiB
Python
117 lines
4.0 KiB
Python
from ...base import is_classifier
|
|
|
|
|
|
def _check_classifier_response_method(estimator, response_method):
|
|
"""Return prediction method from the response_method
|
|
|
|
Parameters
|
|
----------
|
|
estimator: object
|
|
Classifier to check
|
|
|
|
response_method: {'auto', 'predict_proba', 'decision_function'}
|
|
Specifies whether to use :term:`predict_proba` or
|
|
:term:`decision_function` as the target response. If set to 'auto',
|
|
:term:`predict_proba` is tried first and if it does not exist
|
|
:term:`decision_function` is tried next.
|
|
|
|
Returns
|
|
-------
|
|
prediction_method: callable
|
|
prediction method of estimator
|
|
"""
|
|
|
|
if response_method not in ("predict_proba", "decision_function", "auto"):
|
|
raise ValueError(
|
|
"response_method must be 'predict_proba', 'decision_function' or 'auto'"
|
|
)
|
|
|
|
error_msg = "response method {} is not defined in {}"
|
|
if response_method != "auto":
|
|
prediction_method = getattr(estimator, response_method, None)
|
|
if prediction_method is None:
|
|
raise ValueError(
|
|
error_msg.format(response_method, estimator.__class__.__name__)
|
|
)
|
|
else:
|
|
predict_proba = getattr(estimator, "predict_proba", None)
|
|
decision_function = getattr(estimator, "decision_function", None)
|
|
prediction_method = predict_proba or decision_function
|
|
if prediction_method is None:
|
|
raise ValueError(
|
|
error_msg.format(
|
|
"decision_function or predict_proba", estimator.__class__.__name__
|
|
)
|
|
)
|
|
|
|
return prediction_method
|
|
|
|
|
|
def _get_response(X, estimator, response_method, pos_label=None):
|
|
"""Return response and positive label.
|
|
|
|
Parameters
|
|
----------
|
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|
Input values.
|
|
|
|
estimator : estimator instance
|
|
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
|
|
in which the last estimator is a classifier.
|
|
|
|
response_method: {'auto', 'predict_proba', 'decision_function'}
|
|
Specifies whether to use :term:`predict_proba` or
|
|
:term:`decision_function` as the target response. If set to 'auto',
|
|
:term:`predict_proba` is tried first and if it does not exist
|
|
:term:`decision_function` is tried next.
|
|
|
|
pos_label : str or int, default=None
|
|
The class considered as the positive class when computing
|
|
the metrics. By default, `estimators.classes_[1]` is
|
|
considered as the positive class.
|
|
|
|
Returns
|
|
-------
|
|
y_pred: ndarray of shape (n_samples,)
|
|
Target scores calculated from the provided response_method
|
|
and pos_label.
|
|
|
|
pos_label: str or int
|
|
The class considered as the positive class when computing
|
|
the metrics.
|
|
"""
|
|
classification_error = (
|
|
"Expected 'estimator' to be a binary classifier, but got"
|
|
f" {estimator.__class__.__name__}"
|
|
)
|
|
|
|
if not is_classifier(estimator):
|
|
raise ValueError(classification_error)
|
|
|
|
prediction_method = _check_classifier_response_method(estimator, response_method)
|
|
y_pred = prediction_method(X)
|
|
if pos_label is not None:
|
|
try:
|
|
class_idx = estimator.classes_.tolist().index(pos_label)
|
|
except ValueError as e:
|
|
raise ValueError(
|
|
"The class provided by 'pos_label' is unknown. Got "
|
|
f"{pos_label} instead of one of {set(estimator.classes_)}"
|
|
) from e
|
|
else:
|
|
class_idx = 1
|
|
pos_label = estimator.classes_[class_idx]
|
|
|
|
if y_pred.ndim != 1: # `predict_proba`
|
|
y_pred_shape = y_pred.shape[1]
|
|
if y_pred_shape != 2:
|
|
raise ValueError(
|
|
f"{classification_error} fit on multiclass ({y_pred_shape} classes)"
|
|
" data"
|
|
)
|
|
y_pred = y_pred[:, class_idx]
|
|
elif pos_label == estimator.classes_[0]: # `decision_function`
|
|
y_pred *= -1
|
|
|
|
return y_pred, pos_label
|